lomb dissociation, (ii) the target dependence of $\sigma_{WW}(expt)$, and (iii) the magnitudes of $\sigma_{WW}(expt)$. The energy dependence of σ_{WW} (expt) is within the errors of this experiment and verification of this feature will have to await further experiments. The values of b_{\min} derived from σ_{WW} (expt) limit the radial overlap, d, of the colliding nuclei to distances comparable to their charge-skin thicknesses t, a manisfestation of the effects of nuclear absorption. The Coulomb and nuclear fragmentation processes are related by the results that $\overline{d} \approx d'$, which shows that the maximum overlap distance that accounts for Coulomb dissociation is, in essence, tantamount to the nuclear overlap distance required to account for nuclear (direct-interaction) fragmentation.

The authors greatly appreciate the knowledgeable helpful comments unstintingly given us by Dr. B. L. Berman and Professor J. D. Jackson on this work.

*Work performed under auspices of the U. S. Energy Research and Development Administration and the National Aeronautics and Space Administration, Grant No. NGR 05-003-513.

¹P. J. Lindstrom, D. E. Greiner, H, H. Heckman, Bruce Cork, and F. S. Bieser, Lawrence Berkeley Laboratory Report No. LBI-3650, 1975 (unpublished).

²J. D. Jackson, *Classical Electrodynamics* (Wiley, New York, 1975), 2nd ed., p. 719.

³R. Jäckle and H. Pilkuhn, Nucl. Phys. <u>A247</u>, 521 (1975).

⁴X. Artru and G. B. Yodh, Phys. Lett. <u>40B</u>, 43 (1972).

⁵Jäckle and Pilkuhn (Ref. 3), who give equations for $N(\omega)$ for the E1 and M1 transitions, write the integrand of Eq. (1) as $\sigma_{E1}(\omega) N_{E1}(\omega) + \sigma_{M1}(\omega) N_{M1}(\omega)$. Because $N_{M1}(\omega) \approx N_{E1}(\omega)$, to within 10% for our experiment, we can express the integrand as given in Eq. (1), where $\sigma_{\nu}(\omega) = \sigma_{E1}(\omega) + \sigma_{M1}(\omega)$ is the photodisintegration cross section, and $N(\omega) \approx N_{E1}(\omega)$. In Jackson's treatment of the Weiz - säcker-Williams effect (Ref. 2), the $N(\omega)$ for all electric and magnetic multipoles are, in fact, equal.

⁶W. A. Lochstet and W. E. Stephens, Phys. Rev. <u>141</u>, 1002 (1966).

⁷J. Ahrens, H. B. Eppler, H. Grimm, H. Gundrum, P. Riehn, G. Sita Ram, A. Zieger, and B. Ziegler, in *Proceedings of the International Conference on Photonuclear Reactions and Applications, Pacific Grove, California, 1973,* edited by B. L. Berman (Lawrence Livermore Laboratory, Livermore, Calif., 1973), p. 23.

⁸R. L. Bramblett, J. T. Caldwell, R. R. Harvey, and S. C. Fultz, Phys. Rev. <u>133</u>, B869 (1964).

⁹R. C. Morrison, J. R. Stewart, and J. S. O'Connell, Phys. Rev. Lett. <u>15</u>, 367 (1965).

¹⁰S. C. Fultz, J. T. Caldwell, B. L. Berman, R. L. Bramblett, and R. R. Harvey, Phys. Rev. <u>143</u>, 790 (1966).

¹¹B. C. Cook, J. E. E. Baglin, J. N. Bradford, and J. E. Griffen, Phys. Rev. <u>143</u>, 724 (1966).

¹²G. G. Taran and A. N. Gorbunov, Zh. Eksp. Teor. Fiz. <u>46</u>, 1492 (1964) [Sov. Phys. JETP <u>19</u>, 1010 (1964)]. ¹³B. C. Cook, J. E. E. Baglin, J. N. Bradford, and

J. E. Griffen, Phys. Rev. 143, 712 (1966).

¹⁴A. N. Gorbunov and V. A. Osipova, Zh. Eksp. Teor. Fiz. 43, 40 (1962) [Sov. Phys. JETP 16, 27 (1963)].

¹⁵R. Hofstadter and H. R. Collard, in Landolt-Börstein: Numerical Data and Functional Relationships in Science and Technology, edited by H. Schopper (Springer, Berlin, 1967), Group I, Vol. 2, p. 21.

Two-Electron, One-Photon Transition Energies

J. P. Briand

Université Pierre et Marie Curie and Institut du Radium,* 75231 Paris Cedex 05, France (Received 2 February 1976)

Wölfli's experiment about $K^{-2} \rightarrow L^{-2}$ two-electron, one-photon transitions was criticized by Nagel *et al.* in a recent paper. In the present Comment I discuss arguments of Nagel *et al.* and show that Wölfli's interpretation about cooperative x-ray transition is valid.

Nagel *et al.*¹ have recently published a paper about the experiment of Wölfli *et al.*² on cooperative $(K^{-2} + L^{-2})$ x-ray emission observation, asserting that the energy of the line observed by Wölfli *et al.* has not the correct energy to be the $K^{-2} \rightarrow L^{-2}$ transition. I present a Comment giving a value of this energy deduced from our experiments and asserting that the Nagel calculation cannot invalidate the Wölfli interpretation.

Nagel *et al.* correctly assumed that the energy

of a $K^{-2} \rightarrow L^{-2}$ x-ray transition is equal to

$$E(K^{-2} + L^{-2})$$

= $E(K^{-2} \text{ state}) - E(L^{-2} \text{ state})$
= $\{E(K^{-2}) - E(K^{-1}L^{-1})\}^{1}$
+ $\{E(K^{-1}L^{-1}) - E(L^{-2})\},$

i.e., is equal to $E(K\alpha^h) + E(K\alpha^s)$, where $K\alpha^h$ refers to a $K\alpha$ hypersatellite and $K\alpha^s$ to a $K\alpha$ satellite. In fact, Nagel refers to $K\alpha_{1,2}^{h}$ (1s⁻²) $+1s^{-1}2p^{-1}$) transitions and to $K\alpha^s$ ($K\alpha^s$ satellites: $1s^{-1}2p^{-1}+2p^{-2}$) transitions. The final state is then a $2p^{-2}$ state and he found that the $K^{-2} - L^{-2}$ transition should have an energy equal to $2E(K\alpha_1)$ +294 eV in contradiction to the Wölfli value of $2E(K\alpha_1)+153$ eV in the case of iron. I also did such a calculation but using the experimental values of the $K\alpha_2^{h}$ hypersatellite line³ and the $K\alpha_4^{s}$ satellite line⁴ instead of the values given by semiempirical formulas, and taking also into account that only $K\alpha_2^{h}$ lines are observed (the $K\alpha_1^{h}$, not observed, is forbidden in the LS coupling scheme). I found a value which was very close to the Nagel value but the problem is not here.

In fact, the $2p^{-2}$ state cannot be attained in the $K^{-2} - L^{-2}$ transition because it violates parity conservation. Only $(2s)^{-1}(2p)^{-1}$ states are allowed, and in the LS coupling scheme, which is known to hold very well for the considered atoms, the allowed transition can only be

$$(1s)^{-2} {}^{1}S_{0} - (2s)^{-1} (2p)^{-1} {}^{1}P_{1} (L_{1}^{-1} L_{2}^{-1}).$$

The energy difference between the transition energy calculated for the $L_2^{-1}L_3^{-1}$ and $L_1^{-1}L_2^{-1}$ final states, which can be deduced from the *KLL* Auger energy difference, is then equal to 134 eV ⁵ or 142 eV.⁶ The calculated value of Nagel or the value that one can deduce from my precise measurements (298 eV) has then to be reduced by ~140 eV, the correct value for the $K^{-2} - L^{-2}$ transition being $2E(K\alpha_1) + ~160$ eV in good accordance with the Wölfli result (a similar result is also obtained for nickel atoms).

If an intermediate coupling scheme has to be considered, the $1s^{-2} \rightarrow 2s^{-1}2p^{-1}$ transition can also lead to ${}^{3}P_{1}$ or ${}^{3}P_{2}$ final states (Fig. 1). It has been recently proved that for the clorine atom⁷ the intercombination lines and magnetic quadrupolar transitions can be stronger than electric dipolar lines of the LS coupling scheme. The ${}^{1}S_{0}$

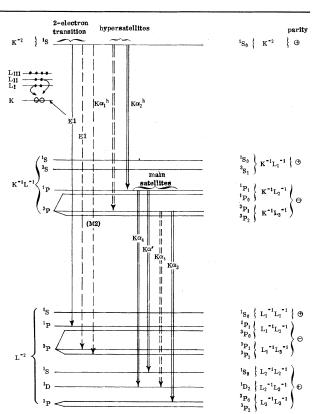


FIG. 1. Radiative decay scheme of K^{-2} states. Full lines, allowed electric dipolar lines in *LS* coupling; dash lines, *E*1 and *M*2 lines in *jj* coupling.

 $+ {}^{3}P_{1}$ or ${}^{1}S_{0} + {}^{3}P_{2}$ two-electron, one-photon transitions have then to be considered in the case of Ni and Fe. These lines have an energy which is only 39 and 47 eV higher^{5,6} than the ${}^{1}S_{0} + {}^{1}P_{1}$ transition (in the case of iron), i.e., far from the $1s^{-2} + 2p^{-2}$ parity forbidden transitions and too close to the ${}^{1}S_{0} + {}^{1}P_{1}$ transition to be experimentally recognized using a SiLi detector.

Another question has also to be discussed which is the influence of L-shell additional ionizations in the initial state on the energy of the transition. It has been demonstrated⁸ that in heavy-ion collisions, K^{-2} as well as K^{-1} , ionization states are generally accompanied by few additional Lvacancies. When n additional L vacancies are present in the initial state of the transition, the hypersatellite and the diagram lines split into ncomponents. With solid-state detectors this splitting appears as a shift of the whole peak. However, it has been demonstrated by Richard, Hodge, and Moore for various elements (see Olsen and Moore⁹) that the energy shift for each component is the same for hypersatellites ($K^{-2}L^{-n}$ $+K^{-1}L^{-n-1}$) and satellites $(K^{-1}L^{-n}+L^{-n-1})$. These additional L vacancies have then no influence on the energy difference ΔE between the two-electron, one-photon transition and twice the value of the *measured* K α energy.

In conclusion, one can say that the energy value of the line observed by Wolfli *et al.* is in good accord with his proposed explanation. However, it should be considered that in most cases of heavy-ion bombardment, numerous additional M vacancies are observed during K^{-2} ionization⁸ and that the discussed line observed in a SiLi detector should be broadened or shifted. These multiple additional M vacancies can also allow various $K^{-2} M^{-n} + L_{ij}^{-2} M^{-n}$ two-electron, one-photon transitions.

Note added.—A similar conclusion about the assignment of the transition observed by Wölfli was also obtained by Hoogkaner *et al.*¹⁰ and by Åberg, Jamison, and Richard,¹¹ these later authors having done a Hartree-Fock calculation for the considered elements which is in good accord with our present results. *Laboratoire associé au Centre National de la Recherche Scientifique No. 198.

¹D. J. Nagel, P. G. Burkhalter, A. R. Knudson, and K. W. Hill, Phys. Rev. Lett. <u>36</u>, 164 (1976).

²W. Wölfli, Ch. Stoller, G. Bonani, M. Suter, and M. Stöckli, Phys. Rev. Lett. <u>35</u>, 656 (1975).

³J. P. Briand, A. Touati, M. Frilley, P. Chevallier, A. Johnson, J. P. Rozet, M. Tavernier, S. Shafroth,

and M.O. Krause, to be published.

⁴Y. Cauchois and H. Hulubei, *X-Ray Table* (Hermann & Cie, Paris, 1947).

⁵O. Hörnfeldt, Ark. Fys. 23, 235 (1962).

⁶K. Siegbahn *et al., ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy* (Almqvist and Wiksell, Stockholm, Sweden, 1967).

⁷C. L. Cocke, B. Curnutte, J. R. MacDonald, and R. Randall, Phys. Rev. A 9, 57 (1974).

⁸P. Richard, W. Hodge, and G. F. Moore, Phys. Rev. Lett. 29, 393 (1972).

⁹D. K. Olsen and C. F. Moore, Phys. Rev. Lett. <u>33</u>, 194 (1974).

¹⁰T. P. Hoogkaner, P. Woerlee, F. W. Saris, and M. Gavrila, to be published.

¹¹T. Åberg, K. A. Jamison, and P. Richard, Phys. Rev. Lett. 37, 63 (1976) (this issue).

Calculation of Two-Electron, One-Photon K-X-Ray Transition Energies

W. Wölfli

Eidgenössische Technische Hochschule, 8049 Zürich, Switzerland

and

Hans D. Betz

Sektion Physik, Universität München, 8046 Garching, Germany (Received 9 February 1976)

It is shown that recently reported two-electron, one-photon K-x-ray transition energies for collision-excited Fe and Ni ions can be described on the basis of Hartree-Fock calculations, provided that multiple ionic excitation and selection rules for E1 transitions are taken into account.

Investigations of x-ray spectra from heavy-ionatom collisions have revealed unusual x-ray lines attributed to cases in which two K-shell vacancies in a single ion are filled simultaneously by two electrons with the emission of a single photon. Wölfli *et al.*¹ reported energies of such transitions with an accuracy of better than approximately \pm 20 eV for Fe and Ni ions with transition energies near 13 and 15 keV, respectively. Recently, Nagel *et al.*² claimed that these transition energies reported in Ref. 1 are inconsistent with predictions based on empirical satellite and hypersatellite energies or with Hartree-Fock calculations. They conclude that the values of Wölfli et $al.^1$ for Fe and Ni are too low by ~150 eV. It is the purpose of this Comment to demonstrate that the assessment of Nagel et $al.^2$ cannot be supported mainly because the selection rules for radiative dipole transitions were not properly taken into account. Experimental transition energies can be reproduced in a consistent manner when E1 selection rules, electronic binding energies, and ionization states are duly considered.

Atomic binding energies are readily calculated with existing relativistic Hartree-Fock programs.³ In the cases of present interest, it is sufficient to