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The (H H H ) phase diagram of a cubic ferromagnet with three easy axes in a field
H =(H„,H~, Hg), is studied by mean-field, scaling, and renormalization-group theories.
For T& T~(II=0) and H l [111]there is a phase transition at fields +IIO(T), described by
the three-component Potts model. By varying H the full phase diagram of the three-di-
mensional Potts model is experimentally accessible and competing predictions of the mul-
ticritical behavior can be tested.

The magnetization of a ferromagnetic crystal
with cubic anisotropy is an old topic which has
been studied' ' since 1926. But, as we will show,
a variety of phase transitions and multicritical
points should occur in low magnetic fields, H

(of order II„„,„),which s. eem to have been over-
looked in previous theoretical work and, so far,
unseen experimentally. Furthermore, it tran-
spires that in a "diagonal" field, H

~~ [111], cubic
ferromangets with three easy axes, [100], [010],
and [001], such as Fe, PrAl„NdAl„etc.,"pro-
vide experimentally accessible realizations of a
three-dimensional, (q = 3)-component Potts mod-
el, ' which is currently a system of appreciable
theoretical interest. ' "

High-temperature series extrapolation studies'
and exact analytic calculations of the latent heat'
have shown that the (d =2)-dimensional Potts mod-
el exhibits a continuous phase transition (in zero
symmetry-breaking field) when q & 4. On the oth-
er hand, ' when studied phenomenologically the
free energy of the q=3 Potts model contains a
term of third degree in the order parameter and
hence, in accord with Landau theory, the transi-
tion is predicted to be of first order! Approxi-
mate renormalization-group calculations for d = 3,
and exact work for small ~ =4 —d, likewise indi-
cate a first-order transition. ' (These renormal-

ization-group studies utilize a continuous spin
version of the Potts model but, on the usual
grounds of universality, the critical and multi-
critical behavior is expected to be the same as
for the original discrete-state model. )

The three-dimensional q =3 Potts model has
been studied by series expansions, "but conflict-
ing conclusions have been reached. To decide if
the transition in three dimensions is continuous
(as for d =2) or is first order (as, presumably,
for d ~ 4) it is of interest to find real systems
which may be described by the Potts Hamiltoni. an.
In fact, it is not hard to see that a cubic ferro-
magnet with three easy axes provides a rather
accurate realization of a @=3 Potts model. In
the remainder of this note we substantiate this
picture in more detail and discuss various ex-
plicit predictions for the phase diagram on the
basis of mean-field theory, scaling concepts,
and renormalization- group analysis.

Certain basic features of the phase diagram
follow quite generally from the cubic symmetry
and the existence of six equivalent easy directions
of magnetization in zero field. A small magnetic
field (~H~ «H„)will merely stabilize that easy di-
rection of magnetization which lies closest to the
direction of H. As H passes through the planes
(110), (101), etc., the appropriate easy direction
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=400 Oe for Fe) the whole phase diagram of a
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4The simplest topology for the critical edges is
illustrated in Fig. 1. Three c t' 1 1'ree cri ical lines meet

m[6vp (vi'+ v2 )-2v 2vp(v, ' —3o 'v
2 1 2

+ —,
'

(v,'+ v, ')'+ o,4] . (2)

Now fix T& T,(0) so that r & 0, and vary the di-
agonal field h = (h„h,=0, h, =0). For large h the

be re
spin component 0, is noncritical and ma hmay ence

symmetry (v, ) = (v, ) =0. However, as h is re-
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the reduced tseo--component order parameter
+=(o o.2&, with a reduced Hamiltonian of the
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The critical edges of the original first-order
planes now terminate (see Fig. 4) in three sym-

on each diagonal at an anomalo t 't'a ous ricritical
point, ' or Potts point, labeled P I", etc. In the
vicinity of a Potts point the H he p ase diagram has
the same form as that of the t -de sm- imensional, q
=3 Potts model in (T, g, h ) space ' However

Landau theories do not yield Potts
points.

To show the equivalence of the ferromagnet to
ma y, we may con-a q=3 Potts model more formall

i son amiltoniansider the Landau-Ginzburg-% 1 H

for a continuous (n=3)-component spin field s(R
in a reduced magnetic field h = H k=m ~T. For a
cubic ferromagnet the local terms are

U(s) = —h s+ 'r~s~'+u—~s~'

+v(s„+s +s ) .

Stability requires u+v& 0 and f thor e anisotropy,
we take v & 0 which yields the desired three easy
axes. " An orthogonal transformation s- v= v„

o, ~ s„—s„takesv„v,, with vppp s„+s+s and v pp

into the same form except that the last term
becomes
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as t =(T —T, )/T, —0 may be rewritten as

M(H, »= It I
s&(h/lt I' lvl', vlt

I
""), (4)
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