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A Woods-Saxon potential which reproduces the single particle levels in the lead region
provides the basis for a discussion of the stability properties of nuclei in the superheavy
region. A closed N =228 neutron shell is associated with the recent observation of nuclei

with Z =124 and 126,

Strong evidence has recently been obtained® for
the existence of naturally occurring superheavy
elements. In particular, proton-induced x-ray
analysis of monazite inclusions in biotite mica,
characterized by giant halos,? indicates the pres-
ence of at least three superheavy elements with
Z =116, 124, and 126. It is the main purpose of
this note to show that a qualitative description of
the major features of the observations can be ob-
tained within the framework of conventional theo-
ry. Specifically, (a) we give arguments for the
existence of adequately stable nuclei (7,;,~ 10°-
10° yr) with Z~114, Z~126, and Z ~164; (b) we
speculate that the 10-15-MeV « radiation, pre-
sumably responsible for the formation of the
giant halos,? may be due to the decay of elements
with Z~164; and (c) we discuss the chemical
compatibility of these elements with the host ma-
terial. A few suggestions are also given for the
further study of elements in the superheavy re-
gion.

The stabilities of nuclei with respect to a de-
cay, B decay, and fission can be discussed by
standard methods. We consider first the single
particle spectrum generated by a Woods-Saxon
potential with parameters optimized for extrap-
olation into the region of superheavy nuclei. The
parameters of our potential were obtained from
a fit to the particle levels in °°Pb and 2°°Bi car-
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ried out by Rost.®* The potential has a standard
form?® with depth given by (upper sign for protons)

V,=51.6[1+0.73(N - Z)/A] MeV . (1)

The remaining parameters were held constant
and are as given by Rost, namely »,=1.262 fm,
¥, =0.908 fm, ¢ =0.70 fm, X =17.5 for protons;
7,=1.295 fm, »,,=1.194 fm, a=0.70 fm, A =28.2
for neutrons. Our approach differs from that of
Rost in that Eq. (1) is used for scaling the poten-
tial depths into the superheavy region. This scal-
ing procedure is consistent with the hypothesis
of charge independence and also yields reason-
able fits to observed particle levels in *°Sn and
13883, We also use a pairing correction term
similar to that introduced by Blomqvist and Wahl-
born* which improves the predicted energies of
occupied levels in ?®*Pb, 2°Sn, and '*°Ba.

We have calculated single particle levels for a
variety of nuclei in the region Z=108-168 and
N=127-312 using the above prescription. Strong
shell closures are obtained for N=184, 228, and
308. Weaker proton shell closures occur in ap-
proximate correspondence with these neutron
closures for Z =114, 126, and 164, respectively.
Results for these particular cases are shown in
Fig. 1. Other authors® " have observed some of
these same features but they have not discussed
the important combination Z =126 and N=228. In
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FIG. 1. Calculated single particle levels for S-stable doubly closed shell nuclei in the superheavy region.

the vicinity of each of the neutron closed shells,
we find both even and odd g stable isotones. Esti-
mates of the a energies and « lifetimes for some
even nuclei of interest are given in Table I. All
are 3 stable except for Z =124 and N =228 which
can decay by the first forbidden 2%, ,~ 14}, , tran-
sition with an energy of 0.3 MeV. The estimated
lifetime for this decay is 1072 yr.

Detailed calculations of the fission half-lives of

TABLE 1. Calculated o energies and half-lives for
various nuclei. The decay energies were estimated as
Qy =28.3 MeV—2S,-25, +A where S, and S, are the
binding energies of the uppermost occupied neutron and
proton orbits, respectively, and A is a correction for
shell breaking effects estimated to lie between 0 (for
nuclei with two nucleons beyond the shell closure) and
300/A4%86 (for nuclei with closed shells or two neutron
or proton holes). The a lifetimes were estimated from
Q, by means of a standard formula quoted in Ref, 6,

Nucleus ( n?eaw In[7, p* (yr)]
Hix1s 5.5 10
3005184 7.8 -1.1
$ax228 5.1 18
1670 7.4 4.3
{Texs08 11.0 1.9

these nuclei have not been attempted. However,
we have made estimates of the spherical shell
corrections to the droplet energy® for level group-
ings like those in Fig. 1 using the Strutinsky meth-
od.° We find the shell corrections for Z=114, N
=184 (fissility x=0.935), and Z =126, N =228 (x
=1.02) to be of the order of 7-11 MeV with most
of the effect coming from the neutron shell in the
latter case. Corrections of this size are typical-
ly associated with fission half-lives in excess of
10° yr for nuclei with fissility x~1.° The shell
correction for Z =164, N=308 (x=1.32) is about
18 MeV in agreement with the results of Lukasiak
and Sobiczewski,® who estimate the fission half-
life for this nucleus to be about 10% yr. The sin-
gle particle levels used in the calculations of
Refs. 5 and 6 have no proton gap at Z=126 and a
neutron shell at N=228 which is somewhat weaker
than found here.

The lifetimes given above were obtained direct-
ly from the potential calculations with no attempt
at optimization of the results. For all nuclei con-
sidered, a factor of 103-10* yr is gained in the
a half-life by increasing the depth of the neutron
potential by only 0.5 MeV. This same change al-
so removes the f-decay problem associated with
322 X»0g and brings the total half-lives for nuclei
in the N=228 region to around 10° yr. The ele-
ment 390X, is anomalous in that somewhat larg-
er, but perhaps still reasonable, changes are re-
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FIG. 2. Contours of constant o energy for the superheavy region. Circles indicate doubly closed shell regions
of interest. The correspondence with the shell-model results is only approximate,

quired to produce adequate stability. This may
be an indication that Z =116 is not spherical.*
The important point is that stability appears to be
well within reach of the calculations in these re-
gions.

To provide a rough summary of some of the
systematics in the superheavy region, Fig. 2 has
been prepared from the Myers-Swiatecki mass
formula® with shell closures at Z =82, 114, 126,
164 and N=126, 184, 228, and 308. The plot
shows the contours of constant @ energy and the
extrapolated g-stability line.'’ Fission stability
is expected only near doubly closed shells. It is
clear from the figure that elements in the circled
Z =114, 116, and 124, 126 regions cannot be the
source of 10-15-MeV « activity associated with
giant halos. One possible explanation might be a
radioactive decay chain which begins in the re-
gion Z~164 and N~308. This radioactive chain
presumably would follow a line in the N, Z plane
just below the line of 8 stability until spontaneous
fission becomes dominant. The fission products
from this region should contain unusual amounts
of radiogenic lead, thus providing a possible ex-
planation for the extreme reverse discordance'®
observed for certain monazite materials. Of
course, other explanations® of the 10-14-MeV «
activity may yet prove adequate.

Theoretical calculations® of the electronic
structures of superheavy elements show that ele-
ments 124 and 126 are members of the superac-
tinide series. The chemical affinity of the mona-
zite crystal for lanthanides and actinides is thus
consistent® with the observation of these elements
in this material. The element Z =116 for which
evidence has also been reported’ is chemically
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described’® as eka-polonium which apparently
does not show chemical affinity for monazite. Its
presence can possibly be explained if it is formed
as a product of radioactive decay from the Z =124
and 126 region. I this explanation is correct, in-
clusions which contain Z =116 together with Z
=124 or 126 would be expected to exhibit a slight
enhancement of o decays with energies between

6 and 8 MeV. Element 114 is described as eka-
lead and presumably could be formed in a simi-
lar manner. However, Z =114 is difficult to ob-~
serve in the proton induced x-ray experiments.’
The affinity of monazite for element 164 is less
clear. This element has been variously de-
scribed’® as chemically similar to lead or plati-
num, but long extrapolations are involved. If the
observed giant halos are indeed produced as a
result of the decay of element 164, measurable
amounts of this element may yet remain.

The major result obtained here has been to
provide a qualitative explanation for the impor-
tant features of the recent observations.! In view
of the fact that the main input for our extrapola-
tions comes almost entirely from nuclei with
Z <82, it would not be surprising if many of the
details obtained here prove to be quantitatively
incorrect. Nevertheless, the qualitative results,
including the predictions of the N, Z combinations
with maximum stability, are expected to be re-
liable. We hope that the above work will stimu-
late more sophisticated investigations of these
regions.

The next generation of experiments will pre-
sumably involve nuclear scattering. Two good
initial candidates appear to be (i) deuteron elas-
tic scattering with kinematic separation and
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(ii) polarized and unpolarized proton elastic scat-
tering via isobaric analog resonances. The form-
er experiment is capable of yielding some mea-
sure of Z and N +Z with the presently available
targets, provided that certain experimental diffi-
culties can be overcome. The latter experiment
requires an appropriately enriched target. Cal-
culations to predict the form of the proton reso-
nances from our single particle spectra are in
progress. An important consequence of the exis-
tence of naturally occurring superheavy nuclei is
the possibility of investigating superheavy elec-
tromagnetic effects' by bombardment with medi-
um mass projectiles such as Ag.
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Reflectivity of Liquid “He Surfaces to *He Atoms
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We explain recent results on the reflectivity of liquid *He surfaces to externally incident
4He atoms in terms of a Van der Waals interaction and strong coupling to quantized sur-
face-tension waves which suppresses all other influences on the reflectivity. The model
gives numerical agreement with experiment and it is found that a proper treatment of den-
sity variation at the liquid *He surface is essential.

In a recent experiment Edwards et al.! meas-
ured the reflection coefficient for *He atoms inci-
dent on the surface of liquid *He, the liquid being
at 30 mK and the range of incident energies lying
between 0.1 and 3.0 K relative to vacuum (or 7.26
and 10.16 K relative to the binding energy of *He
in the liquid). It might be expected that a finite
elastic, specular, reflection coefficient would be

seen, less than unity because many of the inci-
dent atoms will lose energy to elementary excita-
tions of the liquid, but rising to unity at low ener-
gies as the wavelength becomes long compared
with the onset of the surface potential. At higher
energies, in particular at the roton threshold,? a
drop in the elastic reflectivity should be seen as-
sociated with the new channel for inelastic decay.
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