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ployed here {see Fig. 3 caption), except that the 5.3-
keV cobalt channel is 45% high for the streak camera.
The relatively large error in this high-energy channel
is likely related to the relatively weak recorded signal
for cobalt, as observed in Fig. 2.
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We report on the quasi-linear evolution of the electron-beam-plasma instability in a
two-dimensional system. The numerical solutions of the basic equations show that a two-
dimensional system evolves in a different way as compared with a one-dimensional sys-
tem. After saturation the wave energy monotonically decreases with time while the width
of its spectral distribution in & space narrows rapidly. In some cases, the system reach-
es a state which is modulationally unstable, and consequently cannot be described by the
weak-turbulence theory.

In the problem of plasma heating, the turbu-
lence excited by electron beams is of great impor-
tance. Various investigators have studied" the
electron-beam-plasma interaction on the basis
of the quasi-linear theory for the case when the
turbulent oscillation spectrum is one-dimensional
(wave vector k parallel to the motion of the beam).
Such a model is appropriate when there is a mag-
netic field parallel to the beam in the plasma and
when this field is strong enough to suppress os-
cillations that propagate at an angle to the beam
axis. If there is a weak magnetic field in the plas-
ma, so that ~~, » ~ (&u~, and ~„are the plasma
and the cyclotron frequencies of electrons, re-
spectively), the turbulent spectrum becomes es-
sentially three-dimensional. Such situations are
met, e.g. , in astrophysical problems or in the
inertial confinement of plasmas. At present not
much is yet known about the quasi-linear behav-
ior of a three-dimensional turbulence excited by
electron beams in a plasma. Attempts have been
made to find at least certain general features of
possible asymptotic states for the three-dimen-
sional system. ' However, these states seem to
be too artificial and they have never been ob-
served in experiments. ' Thus the relaxation dyn-
amics as well as the final state of the system re-
main unknown.

In this Letter we report on the two-dimensional
quasi-linear evolution of the electron-beam-plas-
ma instability. Since the problem exhibits axial
symmetry with respect to the beam axis, the two-
dimensional model is not restrictive and was on-

ly chosen for convenience. The fundamental equa-
tions of the quasi-linear theory for the electron-
beam-plasma interaction read'
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where a& = 1+3k'/2, Be/8 ~ = 2+ 3k', f is the veloc-
ity distribution function for electrons, and Iz is
the spectral distribution of the electrostatic field
associated with the oscillations. Equations (1)
and (2) are in dimensionless units; the units of
time, space, velocity distribution function, and
spectral distribution are, respectively, ~~,
XD, m, n/T„and 4vnT, . Here m„T„and n are
the electron mass, temperature, and density, re-
spectively, and XD is the Debye Length.

We have solved Eqs. (1)' and (2) by the finite-
element method. "' The algorithm consists of the
following stages. First, Eq. (1) is put into the
Galerkin (weak) form, the natural (Neumann)
boundary condition being imposed on the velocity
distribution function. The approximate solution
for f is then assumed to be a combination gf,e, .
of the linear pyramid basis functions e;(v). ln
this manner, Eqs. (1) and (2) are transformed
into a system of ordinary differential equations
in time for the quantities f, and Ig. Thi. s system
of equations is solved numerically by an implicit,
four-level, time- centered, finite-difference
scheme.
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The accuracy of the solutions was verified by checking the variations of the integrals of motion of
Eqs. (1) and (2) (particle, momentum, and energy densities) and by repeating the computations with
different numbers of the basis functions and the wave modes, and with different time steps. For typi-
cal results presented in this Letter we used about 300 basis functions and about the same number of
wave modes. The initial distribution function was chosen as

f(t = 0) = [2m (1 + $ )] '(exp( —v'/2) + $ exp(- —,
' [(v, —u )'+ v, '] )]..

The values of the parameters $ and u were varied
within certain ranges in such a manner that the
condition for kinetic instability [the condition for
Eqs. (1) and (2) to hold], viz. $'i'(1/u, was satis-
fied. Typically, the values of ( were between
10 ' and 5~10 ', and those of u between 4 and 10.
The initial spectral distribution Ig(t = 0) was taken
as a constant, the value of which was varied with-
in the range 10 '-10"' times the maximal value
of the spectral distribution reached at saturation.

In all sets of computations we have observed
roughly two stages in the evolution of the sys-
tem. They are determined by the time history
of the total wave energy density defined as TV

=gzW-„= /k —,Ipuse/8 v (in units of n T, ). As seen
from Fig. 1, the wave energy density first in-
creases from an initial level to its maximum val-
ue 8'„,within a time t„,. After the saturation it
monotonically decreases. The other quantities
shown in Fig. 1 are the widths of the wave ener-
gy density in k space. They are defined as Ak

=[Qt;(k„—(k„))'Wq/W]' ', where (k ) =Q&k Wz/
TV. It can be seen that in the first stage they re-
main more or less constant, the value of 4k,
being about twice the value of hk„. During the
second stage both widths narrow rapidly. To-
wards the end of the observation time the spec-
trum is so narrow that (Ak)'SW in some cases.
This fact indicates that the weak-turbulence theo-
ry breaks down since the system becomes unsta-
ble with respect to the modulational instability of
Vedenov and Hudakov. ' Figure 2 displays the de-

t pendence of the quantity W„, on the parameters
$ and u. Here the solid lines represent the satur-
ation energy computed for the one-dimensional
system, while the dots refer to the two-dimen-
sional system. We notice that these values are
very close to each other. Moreover, in all cases
it turned out that the saturation time obeys the ap-
proximate formula t„,=41n(W„,/W, )/y, „, W,
and y, „being the initial wave energy density and
the initial maximum growth rate, respectively.
In Fig. 3 we present the spectral distribution of
the field in the direction parallel to the beam
axis (k, =0) at a few instants in time. Here the
plots (a) and (b) refer to the two-dimensional and
one-dimensional systems, respectively. We see
a distinct difference between these two cases.
In the two-dimensional system the spectrum
moves up several half-widths along the k„axis
whereas in the one-dimensional system its loca-
tion remains the same. Furthermore, in the
former case the spectrum is always narrower (at
least by a factor of 2) than in the latter. Figure
4 shows two cross sections of the velocity distri-
bution function at several times. It can be ob-
served that in the first stage the distribution func-
tion flattens along the v„axis in the resonant re-
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FIG. 1. Time history of W, A&„, and 44'~. The ini-
tial conditions are W0=7&& 10, ( =10 5, andu =9.

FIG. 2. Saturation wave energy W», versus paramet-
ter ( for different values of u. The solid lines and the
dots refer to the one-dimensional and two-dimensional
systems, respectively.
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FIG. 3. Spectral distribution of the field at several
instants in time (a) for the two-dimensional system at
k~ =0 and (b) for the one-dimensional system. The ini-
tial conditions are ( =0.01 and u = 4.5.

FIG. 4. Two cross sections of the velocity distribu-
tion function at several instants in time. The satura-
tion time t „,= 1.5x 10, and 8'0 ——7x 10

as one of the main results of our treatment.
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gion of the velocity space. In fact, such a flatten-
ing occurs at different heights for all cross sec-
tions along the lines v, = const in this region. At
the same time the function broadens across these
lines, the width being about twice the initial width
of the beam. As the wave energy damps down
during the second stage, a part of the bulk parti-
cles is heated in the direction parallel to the
beam axis. Thus, a broad high-energy tail is
formed on the distribution function.

During the course of our investigations' we
were made aware" of the work of Ivanov, Sobol-
yeva, and Yushmanov. " With respect to the first
stage of the quasi-linear evolution of the elec-
tron-beam-plasma instability in multidimensions
their conclusions are similar to those presented
in this Letter. However, the second stage, where,
in our opinion, the effects of multidimensions
play the most important role, was not treated in
their paper. The possibility for the system under
consideration to reach a state which cannot be
described by the weak-turbulence theory, viz. a
modulationally unstable state, may be regarded
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