PHYSICAL REVIEW **LETTERS**

VOLUME 37 30 AUGUST 1976 NUMBER 9

Left-Degenerate Vacuum Metrics

Jerzy F. Plebanski* Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México 14, Distrito Federal, México

and

Ivor Robinson The University of Texas at Dallas, Richardson, Texas 75080

 $(Received 21 May 1976)$

For all complex space-times in which the self-dual part of the Weyl tensor is algebraically degenerate, Einstein's vacuum equations are reduced to a single differential equation of the second order and second degree.

It is well known that Einstein's vacuum equations can be simplified considerably if the spacetime admits a congruence of null shear-free geodesics,¹ or if the Weyl tensor is anti-self-dual.² Here we shall consider a broad class of complex metrics which includes both these as special cases.

We impose only one restriction on our spacetime: that it admits a congruence of totally null surfaces. To describe them, we introduce the surface element

$$
\Sigma_{ab} \equiv u_{,a} v_{,b} - v_{,a} u_{,b}
$$

and the expansion form

 $\theta \equiv \theta_a dx^a \equiv \frac{1}{2} (u_{ia}^a dv - v_{ia}^a du)$

where u and v are functionally independent scalars, constant on each surface. By a totally null surface we mean a differentiable two-space to which all tangent vectors are null. It follows that du and dv are null and mutually orthogonal. From this, one can easily prove that'

$$
\sum_{ab \in \mathbf{r}} \sum_{\mathbf{r}}^{c} + \sum_{ab} \theta^c = 0.
$$

In the special case $\theta = 0$, not merely is Σ covari-

antly constant on each surface, but the equations

 $x_{ir}^a \Sigma^{rb} = 0$

have a tetrad of independent solutions. A totally null surface, therefore, is geodesic by definition, and plane if its expansion vector is zero.

The surface element is self-dual or anti-selfdual. We describe the congruence as left-handed in the first case, and right-handed in the second. A congruence of null shear-free geodesics is the intersection of a left-handed congruence of totally null surfaces with a right-handed one.¹ Here, of course, we are dealing with only one congruence. We take it to be left-handed.

For our purposes, the empty-space equations fall naturally into three classes: first, the three surface equations,

 $\sum_{a}^{b} R_{ba} \sum_{b}^{q} = 0$;

second, the *central equations*, comprising $R = 0$ and the three remaining equations of

 $R_{aa}\Sigma_b^{\ q}=0;$

and third, the three residual equations of $R_{ab}=0$. Since Σ is self-dual, null, and closed, the equation

$$
\sum_{ab} C^b_{\text{bar}} \Sigma^{rq} = 0
$$

is an integrability condition for the surface equations. ⁴ It signifies that the self-dual part of the Weyl tensor is degenerate. Conversely, any leftdegenerate vacuum space-time contains a congruence of $left$ -handed null surfaces. 4 In the plane case, the surface equations are satisfied identically, and a stronger equation of left degeneracy,

$$
C_{abar} \Sigma^{rq} = 0
$$
,

is equivalent to $R = 0$.

Before setting to work on the field equations, we introduce complex coordinates specially adapted to the congruence. Two of them are u and v . The other two, x and y , are chosen so that

 $ds^2 = 2e^1e^2 + 2e^3e^4$,

with

 $e^1 = \varphi^{-2} du$, $e^2 = dx + \varphi du + \varphi dv$, $e^{3} = \psi^{-2} dv$, $e^{4} = dy + \Re du + Q dv$.

On substituting into the integrability condition, we obtain

 $[\ln(\varphi/\psi)]_{\text{av}} = 0$,

which shows that a suitable transformation of the form $x \rightarrow X(u, v, x)$, $y \rightarrow Y(u, v, y)$, makes $\varphi = \psi$. (We remark, incidentally, that the two-form Σ/φ is now covariantly constant on each null surface.) The surface equations read

$$
\varphi_{xx} = \varphi_{xy} = \varphi_{yy} = 0;
$$

and we still have at our disposal coordinate transformations of the form

$$
u \to U(u, v), \quad x \to [xV_v - yV_u + X(u, v)]W(u, v),
$$

$$
v \to V(u, v), \quad y \to [yU_u - xU_v + Y(u, v)]W(u, v).
$$

$$
y - V(u, v), y - [yU_u - xU_v + Y(u, v)]W(u, v).
$$

We use them to put $\varphi = ay - bx + c$, with constant $a, b, \text{ and } c.$ The expansion form is now given by

$$
\theta = \varphi (a du + b dv).
$$

The metric belongs to the Plebanski-Schild class.⁵

$$
ds^2 = ds_0^2 + 2\varphi^{-2} (\mathcal{O} du^2 + 2\mathcal{R} du dv + \mathcal{Q} dv^2),
$$

where $d{s_0}^2$ is flat, while du and dv are null and orthogonal. In the special case

 $\Delta \equiv \varphi^{-2}(\mathcal{P} \mathcal{Q} - \mathcal{R}^2) = 0,$

it reduces to the Kerr-Schild form.⁶

The central equations are more complicated. After some manipulation, one finds that the general solution contains three disposable functions: $\Pi(u, v, x, y)$, $f(u, v)$, and $g(u, v)$. It may be written as

$$
\begin{aligned} \varphi^{-3}\Phi &= \xi f - (\varphi^{-2}\Pi_y)_y\,,\\ \varphi^{-3}\mathfrak{L} &= \eta g - (\varphi^{-2}\Pi_x)_x\,,\\ 2\varphi^{-3}\mathfrak{K} &= \xi g + \eta f + (\varphi^{-2}\Pi_x)_y + (\varphi^{-2}\Pi_y)_x\,, \end{aligned}
$$

where $\xi = f$ and $\eta = g$ for $\theta \neq 0$, while $\xi = \frac{2}{3}x$ and η $=\frac{2}{3}y$ for $\theta = 0$. One can derive the second case as a limit of the first. The residual equations take the form

$$
\Xi_{xx} = \Xi_{xy} = \Xi_{yy} = 0
$$

with the integral

 $2\Xi = y\alpha(u,v) - x\beta(u,v) + \gamma(u,v),$

where Ξ is constructed from a, b, c, f, g, and II. This is our one remaining field equation.

In the diverging case, we obtain $a = -b = 1$, c = 0, $f = g \equiv \frac{1}{2}\sqrt{\mu}$, by specializing the coordinates, and using the transformation

$$
f \rightarrow f + 2ak, \quad g \rightarrow g + 2bk,
$$

\n
$$
\Pi \rightarrow \Pi + k\varphi^3(fy - gx + k\varphi),
$$

where k is a disposable function of u and v . We then find that

where
$$
k
$$
 is a subspace
then find that

$$
\Xi = \Delta + \varphi^{-2} (\Pi_x - \Pi_y)^2 + \frac{1}{2} \mu \varphi (\Pi_x + \Pi_y) - 3\mu \Pi + \varphi^{-1} (\Pi_{ux} + \Pi_{vy}) - \frac{1}{4} (x - y) (x \mu_u - y \mu_v).
$$

We make μ constant and put α = β by specializing the coordinates further and using the transformation

 Π + Π + $\frac{1}{6}$ $\varphi^3 l(u, v), \quad \alpha \to \alpha + l_u + l_v, \quad \beta \to \beta - l_u - l_v.$

The self-dual components of the Weyl tensor are given by⁷

$$
C^{(5)} = C^{(4)} = 0
$$
, $C^{(3)} = -2\mu\varphi^3$, $C^{(2)} = 2\beta\varphi^5$,

$$
C^{\,(\,1\,)}=2\varphi^{\,\prime}\big[\!y\beta_u-x\beta_v-2\beta\,(\Pi_x-\Pi_y)+(\vartheta_u+\vartheta_v)\left\{\textstyle\frac{1}{2}\gamma\,-\mu\varphi^{\,-\,1/2}(\vartheta_x+\vartheta_y)\varphi^{\,-\,3/2}\Pi\right\}\big]\,\,;
$$

the anti-self-dual components, by

 $\tilde{C}^{(n)} = 2\varphi^3\partial_x^{5-n}\partial_y^{n-1}\Pi$, $n=1$

In the plane case, it is convenient to put φ = 1. We then have

$$
\Xi = \Delta + \hat{\partial}_u \Pi_x + \hat{\partial}_v \Pi_y + \frac{1}{6} (y \hat{\partial}_u - x \hat{\partial}_v) (y f - x g),
$$

where

$$
\hat{\partial}_u \equiv \partial_u + f \,, \quad \hat{\partial}_v \equiv \partial_v + g \,.
$$

We can make $\alpha = \beta = \gamma = 0$ by means of a transformation on II; but this has the effect of introducing into the metric additional functions p , q , and r of u and v :

 $\mathcal{P}=-\Pi_{yy}+p+\frac{2}{3}xf,~~\mathcal{Q}=-\Pi_{xx}+q+\frac{2}{3}yg,~~\mathcal{R}=\Pi_{xy}+r+\frac{1}{3}(yf+xg).$

When the field equation is satisfied, the Weyl tensor is given by

$$
C^{(5)} = C^{(4)} = C^{(3)} = 0, \quad C^{(2)} = f_v - g_u, \quad C^{(1)} = (y \partial_u - x \partial_v) C^{(2)} - 2 \partial_v^2 p - 2 \partial_u^2 q + 4 \partial_u \partial_v \gamma,
$$

and

$$
\tilde{C}^{(n)} = 2\partial_x 5^{-n} \partial_y n^{-1} \Pi, \quad n = 1, \ldots, 5.
$$

Without loss of generality, we can make one function zero in each of the sets $\{f,g\}$ and $\{p,q,r\}$; if the Weyl tensor is left-null, we can make $f = g = 0$; if left-flat, $f = g = p = q = r = 0$.

One can deal with Einstein-Maxwell vacuum equations in much the same way, provided that one takes

 $\sum_{ab} F^{ab} = 0.$

The surface equations are unaltered; Maxwell's equations give

$$
F_{ab} dx^a \wedge dx^b = \epsilon (du \wedge dx + dv \wedge dy) + (\delta + x\epsilon_v - y\epsilon_u)du \wedge dv
$$

+ $\varphi^2 [H_{xx}e^2 \wedge e^3 + H_{yy}e^1 \wedge e^4 + H_{xy}(e^1 \wedge e^2 + e^4 \wedge e^3)]$

where the wedges indicate antisymmetrical tensor multiplication, ϵ and δ are disposable functions of u and v only, while H is subject to

 $H_{\nu u} + H_{\nu v} = \mathcal{O}H_{xx} + \mathcal{Q}H_{\nu v} + 2\mathcal{O}H_{xy}$;

and the remaining equations integrate in much the same way as in the purely gravitational system.⁸ There is an interesting formal resemblance between the roles of Π in the last metric and H here.

The present work might well simplify the problem of finding real degenerate solutions in the case that has so far proved most refractory: that of twisting rays. Of greater interest, however, is the possibility of moving in the opposite direction: not specializing the anti-self-dual part of the Weyl tensor, but removing the present restriction on its self-dual part. This would presumably involve the introduction of a second Hertz function II. Our conjecture is that Einstein's equations in the most general complex case could be reduced to a pair of differential equations of the second order and second degree.

We are grateful to Istvan Ozsvath and J. D. Finley for enlightening discussions.

*On leave of absence from the University of Warsaw, Warsaw, Poland.

 $¹I$. Robinson and A. Trautman, Phys. Rev. Lett. 4, 431 (1960), and in Conference International sur les Théories</sup> Relativistes de la Gravitation, Jablonna, 1962, edited by L. Infeld (Gautier-Villars, Paris, and PWN—Polish Scientific Publishers, Warsaw, 1964), pp. 107-114; R. P. Kerr, Phys. Rev. Lett. 11, 287 (1968).

²J. F. Plebanski, J. Math. Phys. (N. Y.) 16, 2395 (1975); J. D. Finley, III, and J. F. Plebanski, J. Math. Phys. (N. Y.) 17, 585 (1976).
³I. Robinson, J. Math. Phys. (N. Y.) 2, 290 (1961).

⁴J. F. Plebanski and S. Hacyan, J. Math. Phys. (N. Y.) $\underline{16}$, 2403 (1975); see also I. Robinson and A Schild, J. Math. Phys. (N. Y.) 4, 484 (1963).

⁵J. F. Plebanski and A. Schild, in Proceedings of the International Symposium on Mathematical Physics, Mexico City, Mexico, $5-8$ January 1976 (unpublished), pp. $765-787$, and to be published.

 ${}^{6}G$, C. Debney, R. P. Kerr, and A. Schild, J. Math. Phys. (N. Y.) 10, 1842 (1969).

⁷The expression for $C^{(1)}$ given here was derived by J. D. Finley, III, and A. Garcia.

 δ Details of this generalization will be given in a paper by A. Garcia and the present authors.