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sion angle. Study of Fig. 3 reveals that in the an-
gular domain -60'&0 &80 energy deposition is
dominated by elastic scattering and meson pro-
duction on a single nucleon.

In conclusion, accepting one of the premises of
EFM we set a new lower limit for the proton-pro-
ton interaction time. ' The independence of the
aluminum to hydrogen multiplicity ratio at small
lab emission angles, under large variations of
missing mass and transverse momentum, sug-
gests that there is only one inelastic collision
per nucleus in which the effective mass of EF is
formed. The equality of the positive to negative
track ratios for both p-P and p-Al interactions
shows that energy deposition in Reaction (2) is
dominated by meson production.

Collaboration of our colleagues at Brookhaven
National Laboratory, Virginia Polytechnic Insti-
tute, University of Wisconsin, and University of
Pennsylvania in the data taking is appreciated.
We would like to thank Professor K. Gottfried for
illuminating explanations of some aspects of EFM
and for his critical remarks.
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We propose to test the validity of the multiplicative muon-number conservation law by
comparing the quasielastic reactions &~+e p, + v, and v&+e —

p, + v~ at &400 GeV.
We note that the measured electron spectrum in muon decay places strong constraints on
the effective Lagrangian for the ~~-induced process.

At the present time it is not known whether the
muon number is conserved additively or multi-
plicatively. ' In this paper we examine the feasi-
bility of answering this question via the study of
quasielastic v& and v„scattering from electrons.
If the multiplicative conservation law is valid,

then we expect both the antineutrino reaction

Vp+8 P +V

and the neutrino reaction

V +e P, +V
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to occur at the same energy. If, on the other
hand, the additive law holds, then Reaction (1) is
forbidden, and Reaction (2) is the only one al-
lowed. The threshold for these reactions is giv-
en by

E,h
——(m q

-m, )/2m, = 10 GeV .

The interaction Hamiltonians that give rise to
quasielastic neutrino-electron scattering also

give rise to muon decays,
p, - e +v, +v» (1')

p, -e +v +v&, (2')
and so they must both be consistent with the ob-
served properties of the electron spectrum. As
is well known, ' the measured values of the Michel
parameter p, the angular correlation parameter
$ of the electrons with respect to the muon spin
direction, and the helicity of the electron all im-
ply that the interaction must be dominantly V- A
in character. Therefore we take the Hamiltonians
to be

H(v„e) =2 '"G cosn[v, y~ (1+y,)ej [yy~ (1+y,)v„]+H.c. ,

H(v&e) =2 '"G sinn[v&yz(1 +y, )e][p yz(1+ y, ) v, ]+H. c. ,

(4)

(5)

where G is the universal weak-interaction coupling constant, G =10 'm~ ', and the angle e is to be de-
termined by experiment. The second Hamiltonian is obtained from the first merely by interchanging
the e and p, subscripts on the neutrino fields; it cannot arise from a gauge model of weak interactions
unless there are substantial violations of muon- and electron-number conservation.

The differential cross section calculated for Reaction (1) according to (5) in the rest frame of the
v„+e system is

[(s —m, ) cosg'+s+m, ][(s—m& )cos9'+s+m& ], (6)

where s is the square of the available total energy of the v-e system, and L9' is the production angle of
relative to the incident neutrinos in the c.m. system. The angular dependence (1+a cos8'+ b cos'p')

of the differential cross section comes about because the incident v„ is right handed, and in the V-A
Hamiltonian of Eq. (5) it scatters from a left-handed electron. By contrast, the differential cross sec-
tion for Reaction (2) is isotropic in the v&-e c.m. system:

do(v„e) G'cos'n (s —m„')'
dQ' (2w)' s

because the incident v„and electron now have the same, left-handed helicity.
By taking advantage, as we discuss below, of the special kinematic features of Reaction (1}and the

well-defined nature of a dichromatic v& beam available at Fermilab, we find that the difference be-
tween the angular distributions of Eqs. (6) and (7) provides us with a possible means of distinguishing
between muons created in Reaction (1) and those created in Reaction (2).

The unique kinematic features of Reaction (1) can be visualized in the terms of the laboratory vari-
ables as follows:

E„»E,„=(m, '+mq')/2m, = 10 GeV,

do 2G sin n E„m, E„1m, m„'

which drops sharply as the muon laboratory energy E„ increases from 10 GeV to E,„=E—„and

g & g mRx
m' "' s-m '

m ' —m ' (s' —m 'm ')"' = 5 mrad.
p e e p

(10)

Thus, a fast forward negatiue muon unaccompanied by anything detectable (other than neutrinos) pro-
vides us, in principle, a unique signature of Reaction (1). Now, the fact is that at Fermilab, (a) the v-
beam direction is well defined, possibly known to within 1 mrad; (b) the Coulomb multiple scattering
of s. 15-GeV p in Ne or Al is less than 2 or 3 mrad in a path of 1 m; (c) the v„background in the v&
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beam can be measured to an accuracy of 30% via
the study of the reactions

v„+n -p, +p,

vp +p p +nq (12)

and (d) a dichromatic beam allows us to calculate
the p, angular distribution in the c.m. system,
and it also removes another major background
for Reaction (1) originating from the much more
likely reaction

v +nucleons- p, +neutrals
P (13)

at low energies (E,&Z, „).
At high energy, the phase space for seeing a

p. originating from (13), characterized by the
features (8)-(10), and unaccompanied by any de-
tectable hadronic showers is practically zero
(e.g., because of an observed flat y distribution).

To determine the angle o. , we propose to mea-
sure the ratio of the v„ flux to the v„ flux in a v„
beam via the study of Reactions (ll) and (12).'
We then select the ti candidates of (1) and (2)
according to the kinematic criteria given by (8)-
(10). The number of events expected from (2)
can be calculated from the v& flux. Hence the ex-
cess of p, can be assigned as candidates for Re-
action (1). Although, Reaction (1) has a rate
which is roughly —,

' the rate for Reaction (2), and
-10 ' times the rate for Reaction (13), its clean
signature (namely, a fast, forward, negatively
charged, single muon) is unique and easy to iden-
tify.

Experimentally, the validity of the multiplica-
tive lepton-number conservation law has been
tested with various techniques at low energies. 4

With a precise knowledge of the incident beam,
the target, and outgoing p, , Reaction (1) provides
us a direct test of the conservation law, and so
we propose to search for it with the present avail-
able facilities at Fermilab. For instance, we
can expose either the 15-ft bubble chamber filled
with Ne or the Fermilab-Harvard-Penn-Wiscon-
sin calorimeter' or the Chicago-Oxford ve detec-
tor' coupled with a muon identifier to the narrow-
band dichromatic v„beam. ' Since the quantity
(2G'/m)m, appearing in (9) is 1.'l2 x10 "cm'/
GeV, with the 15-ft bubble chamber filled with

Ne, one expects to see only 12 to 20 events of Re-
action (1) in one million pictures. It would be
nice to arouse the attention of every involved ex-
perimental group who may have a chance to
search for the existence of such a reaction. On
the other hand, with the counter type of experi-
ment this is not an uninteresting search to pur-
sue.

Note added. —After this work was completed,
we learned that H. Chen, P. Condon, B. Barish,
and F. Sciulli have also considered looking for
Reaction (1) as a test of multiplicative law
(H. Chen, private communication).
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