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Renormalization Group by Monte Carlo Methods
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I discuss the basic ideas in applying the Monte Carlo methods to the renormalization-
group study of static and dynamic critical phenomena within the framework of a kinetic
ising model. Simple calculations demonstrating these ideas are presented.

Ever since electronic computers became avail-
able, the Monte Carlo method has become a use-
ful tool in studying statistical mechanical prob-
lems as well as other problems in science. . Ba-
sically the method involves generating, with the
aid of a random-number generator, a sequence
of configurations of the statistical mechanical
system of interest in such a way that these con-
figurations follow a canonical distribution. ' 4

Then one can "observe and measure" various
physical properties such as the energy and the
magnetization. In short, the method is a numer-
ical experiment. The random -number generator
simulates the effect of the thermal reservoir with
which the system is in contact.

The literature on the application of Monte Carlo
methods to the study of critical phenomena is
vast (see the review article of Binder' and refer-
ences therein). In spite of the extreme sophisti-
cation in programming and the power of the new-
est computers, there is still difficulty in simula-
ting a system much larger than the correlation
length $, which becomes infinite at the critical
point. The divergence of $ and other physical
quantities is of course that which makes the crit-
ical phenomena difficult to study.

The recently advanced renormalization-group
(RG) method has been effective in extracting the
critical exponents. ' ' This method does not at-
tempt to calculate the singular quantities directly.
It deals with the transformation of the interaction

parameters defining the model under a change of
length scale. Critical exponents are deduced
from the transformation properties. The under-
standing of this very successful method cannot be
regarded as complete, however, because there
has been no systematic procedure in carrying out
the RG method for three- and bvo-dimensional
systems. Recent numerical works have made
many advances. ' ' They demonstrated not only
the power of the method, but also that there is
much to be understood.

The idea that a program combining the Monte
Carlo and the RG methods should be helpful in the
study of critical phenomena and the basic aspects
of the RQ seems evident. It is the purpose of this
note to explain and demonstrate this idea. My
preliminary results reported below show an op-
timistic outlook for developing this program into
a powerful tool. The program applies to both
static and dynamic RQ.

To be specific, I shall carry out the discussion
in the framework of a simple kinetic Ising mod-
el. '0 Consider Ising spine c„=+I (r is the coor-
dinate vector), on a two-dimensional square lat-
tice. The dynamics (and hence the statics) is de-
fined by the flip probability

w„(cr„)dt = I' exp(- v„B„)dt

for each spin, which is the probability that the
spin at r flips from 0„ to -o„ in the time interval
dt. B„ is the magnetic field seen by o„, and is
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the sum of the applied field h and the field pro-
duced by neighbors. Formally, we can write

SMALL PROBE
I II

LARGE PROBE

where K[o] is —(Hamiltonian)/(temperature) for
the spin configuration 0. The quantity I is inde-
pendent of o„but may depend on the neighboring
spins. Let p. denote the set of parameters spec-
ifying the model:

(3)
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where J, E, and L refer to, respectively, the
nearest-neighbor, the next-nearest-neighbor,
and the four-spin interaction parameters. The
rate go„{o„)given by {1)and the rate w, (-o,) for
the inverse process satisfy the condition of de-
tailed balance,

cr = - crr r
t = t+t,

RANDOM
NUMBERS

(b)

FIG. 1. (a) Outline of the program. (b) Generation of
configurations.

w„(—o„)/w„(v„) = exp(2B„o„)
= exp(3I'[o] —X [o "]), (4)

flips. Thus the probability that nothing happens
for a period t' and then one of the spins flips dur-
ing the next interval dt' is

where o" is the configuration obtained from 0 by
reversing o„. This condition implies that the
probability distribution for 0 will approach the
canonical distribution exp(K[v]) after a long time.

The basic steps of a Monte Carlo program that
carries out the RG transformation p, —p,

' are out-
lined in Fig. 1(a). The first step is to generate a
sequence or a "history" of spin configurations
according to (1). The second step is to measure
the interaction parameters with probes of differ-
ent scales. This is the step which is very differ-
ent from the previous Monte Carlo studies. Here
we do not measure global quantities like the spe-
cific heat, but rather observe how a small num-

ber of neighboring spins behave, i.e., we make
"local measurements. " The "small probe" is a
probe measuring interaction parameters among
the spins and should give the p, we start with.
This serves as a check on the generation proce-
dure and convergence. The large probe is de-
signed to measure the effective interaction para-
meters p'= (J', K', L', I") among the block spins.
The last step is a matter of analyzing the data
and extracting exponents. I proceed to explain
these steps in more detail.

Figure 1(b) shows the generation of configura-
tions. Given a configuration v at time t, one
computes the rate zu, (o„) for each spin. The prob-
ability that no spin shall flip during the subse-
quent period t' is exp(-Ot'), where

O = Q„ur„(o„)

is the probability per second that one of the spins

e "'Ddt'.

The probability that the one which flips is o„ is

w„(v„)/n (7)

To choose t' and x, I have the computer gener-
ate two uniformly distributed random numbers 0
&x, y &I, and set

t' = —(Inx)/Q.

Then divide the interval (0, 1) into A' portions (N
being the total number of spins), one for each
spin, with lengths given by (7). The spin whose
portion contains y gets flipped. " The procedure
is then repeated.

The interaction parameters are measured by
observing how a spin behaves in a given environ-
ment. When the range of interaction is no longer
than the distance to the next-nearest neighbor,
the environment of a spin is defined by the con-
figuration of its eight neighbors (four nearest and
four next-nearest). The small probe looks at 3
x3 spins and measures ~, and ~, the lengths of
time before flipping that a spin spends in the + 1
state and that in the —1 state, respectively. "
The ratio v, /w = exp(2B„) gives an equation for
J; K, and L. For example, in the environment
where all eight neighbor spins are +1, then B„
=4(Z+K+L). By measuring ~, /~ in three or
more different environments, one can solve for
J; K, and L. The geometrical mean (~,~ )"'
gives I'. For determining the static parameters
J, R, and L, one can simply accumulate the total
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times before taking the ratios.
The large probe is the same as the small probe

except that it looks at 3 &&3 block spins at a time.
Each block spin is a set of 2&2 spins. The value
of a block spin is chosen to be + I if the maj ority
of its constituents, excluding one spin arbitrarily
to assure a majority, are + 1, and —1 if the ma-
jority are —1. The results of the large-probe
measurements give p.

' = (J', K', L ', I"), i.e., the
interaction parameters at a scale twice as large
as that defined by the small probe.

The probes, large and small, can scan through
the system to take measurements at different lo-
cations. I emphasize that we look at only local
properties, i.e., a spin (or a block spin) at a
time, and see how it behaves in a given environ-
ment, never at any collective property of the
system. Thus the size of the lattice for our cal-
culation and the boundary condition do not matter
as long as the lattice is larger than the probes
and the probes stay away from the boundary. It
does not matter if $ is larger than the lattice.

In principle there should be more parameters
in p. and p,

' to assure a complete representation
of the transformation. A larger probe would be
needed. Using only a 3 &3 probe and the param-
eters above is a truncation. The truncation pro-
cedure in RG is still not understood. So far our
preliminary calculation is not accurate enough to
shed light on this problem.

The determination of I" is interesting although
less well defined. Note that there has been no
formulation of the dynamic RG apart from per-
turbation expansions in very special numbers of
dimensions. " In the absence of a formalism, we
rely heavily on the experimental nature of the
Monte Carlo method in defining I". We observe
how a block flips in a given block environment
and fit the observations with a kinetic Ising mod-
el. The block spins actually do not follow a pure
exponential law of flipping like the original spins.
Qualitatively, there are two time scales. When a
block spin flips over, there is an intermediate
period during which the block spin fluctuates rap-
idly. The time scale of this fluctuation is that of
the original spin. This is the period when the
block spin is determined by a single spin because
the other two in the block have opposite signs.
The longer time scale is that which describes the
collective behavior of a block. We must use I"
to fit this longer time scale. There are ways to
extract the longer times. One can erase any two
successive Slips of a block spin within a time t;„
—(original spin-flip time), construct histograms

for the distribution of observed times, then plot
them on semilog scale and fit straight lines to
the longer time tails.

The static exponent v is related to the largest
eigenvalue Xz, =2'~" of the matrix BJ /BJ& (J,=J,
J,=E, and J,=L). The exponent q is related to
the largest eigenvalue X„=2' ""of ah, '/Bh, (b,
= h is the applied field and h, is the three-spin in-
teraction). These matrices can be calculated di-
rectly through averages at given block configura-
tions when the large probe scans through the sys-
tem. " For example

where w, is the time that a block spin spends in
+1 states given all eight neighboring blocks in +1
state, and

(A), =—Q,'e~A/Q, 'e", (10)

which means averaging over the original spins at
the fixed block configuration with the center one
at +1 and the eight neighbors at +1. Equation (9)
follows from the fact that

The dynamic exponent z is obtained through I'/
F' —2

There are alternatives and variations to the
program described above. One which I tried is
to impose an additional field B„[o']defined by a
given block-spin configuration g . It is so strong
that only those spin configurations which are con-
sistent with v' can occur. Explicitly for the block
containing o„o„a„and o„we have o„B„[o']
= a (o, +o, + o, —o,o,o, )o', for r = 1,2, 3 and B,= 0.
The constant a is fairly large, - 10. One can also
leave some blocks unimposed.

Flexibility is a great virtue of the Monte Carlo
method. Generalizations to three -dimensional
models and other definitions of RG seem to be
straightforward. The maj or disadvantage seems
to be the imprecision. An increase of precision
by 10 means roughly 100 times longer computing
for the same program.

Table I shows the results of the four trial pro-
grams. The errors indicated are in a large part
due to the uncertainty in the fixed point. The
probes could determine only J (5/o) and K (20%),
but not L. The static fixed point of Ref. 8 was
used in these programs. The dynamic part of the
fixed point is less well known. The one-param-
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TABLE I. Preliminary results.

Block Lattice Time' 1/v (d+2-q)/9

2x2
3x3
2x2b
2x2b

15x 15
15x 15
12X 12
12x12

2.5
1.5
0.7
2.5

0.96 + 0.04
1.02 + 0.10
0.93+ 0.10

1c

1.87+ 0.08
1.96+ 0.10
1.85 + 0.10

1.875

1.4+ 0,4

1.4+ 0.4

-2 (Bef. 15)

~ Minutes on a Saclay CDC 7600 computer.
B imposed.' Qnsager value.

eter fit here is too crude. A better approxima-
tion to the dynamic fixed point would need to in-
clude some memory and perhaps additional modes
such as energy fluctuations. In view of the inef-
ficiency of these trial programs and the relatively
trivial amount of time and effort spent, I find
these results very encouraging.
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