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Organic Linear Conductors as Systems for the Study of Electron-Phonon Interactions
in the Organic Solid State
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A model calculation shows that each phonon band which couples to the electron density
in an organic linear-chain semiconductor effectively develops an infrared activity along
the chain axis. The origin of the effect lies in phase oscillations of additional charge~den-
sity-wave distortions which inevitably arise in the presence of electron~-phonon interac-
tions. This suggests that organic linear conductors may constitute unique systems for
the study of electron-phonon interactions in the organic solid state.

I have calculated the frequency-dependent conductivity, o(w), of an organic linear-chain semiconduc-
tor on the basis of a model which attempts to allow for all the possible (i.e., symmetry allowed) con-
duction-electron-phonon couplings that can be expected to be present in such a semiconductor.! The
result is remarkable in that it suggests that organic linear conductors, for example, triethyl ammoni-
um tetracyanoquinodimethane [TEA(TCNQ),], tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ),
and related charge-transfer salts,? may constitute rather unique systems for the experimental and the-

oretical study of electron-phonon (e-p) interactions in the organic solid state.
The model is a linear-chain system defined by the Hamiltonian (=1

H =Z>k€k6(€B - I €k l )ak Tak + V(pqo +p=‘10) +Z>n2a [bn 1.(q)bn(q) + %] wn(q) +N.1&Zn2qgnQn(q)p'a . (1)

The first two terms describe a system of » con-
duction electrons per unit length with energies €,
=(|#| —k§)vg lying within the range |e,| <€ (relative
to their Fermi energy) moving in a periodic po-
tential V (|V|/ez assumed small) of wave vector
q,=2ks. They represent a simple model of the
semiconductor in the absence of e-p coupling. &y,
vg, and akT denote, respectively, the conduction-
electron Fermi wave vector, velocity, and crea-
tion operator. The operator p,=2,,a, '@,+, cre-
ates an electronic density fluctuation of wave
vector g. The fourth term describes a coupling
of the conduction electrons to a set of G distinct
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I phonon bands labeled by the indexn (n=1,2,...,

G). 1 do not specify the precise nature of these
bands; in general they will be determined by the
group symmetry of the underlying molecular and
electronic structure. Note, however, that in or-
ganic systems many of them will be associated
with those inframolecular vibrations which induce
modulation of the local conduction-electron, mo-
lecular-orbital (MO) energy, i.e., with the totally
symmetric (a,) molecular vibrational modes
which, in the isolated molecule, are infrared-
nonactive.! @,(q) =b,(q) +b,7(~q) denotes the di-
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mensionless normal-mode displacement operator
associated with the nth phonon band and g, denote
the symmetry-allowed e-p coupling constants.
The third term is the Hamiltonian for the set of
G noninteracting phonon bands, the phonon fre-
quencies of the nth band being w,(¢). The model
(1) purports to describe a linear conducting chain
of N chemically similar organic molecules. The
potential ¥V may be considered to simulate the ef-
fect of a static periodic modulation of the conduc-
tion-electron MO energy caused by the external
presence of a donor chain structure? [e.g., the
Cs* chain in Cs,(TCNQ), or the TEA chain in
TEA(TCNQ),].

In the absence of e-p coupling the semiconduct-
ing state arises from the action of the periodic
potential V of inducing the conduction electrons to
condense into a charge-density wave (CDW) of
wave vector ¢g,.®> The expectation value of Pe Op,
={p,’, is nonvanishing for g=+gq,. The phase of
the CDW is fixed by the (fixed) phase of V and the
single-electron energy states are E,°=sgn(€,)(€,>
+ V3% The frequency-dependent conductivity,
0y(w), is due simply to single-electron transitions
between the two sub-bands contained in E,°, and
may be calculated to be* 0y(w) = (re?/iwm)[fw/2V)
-f(0)], where m =kg/vg is the conduction-electron
mass and

A@)={mi +1n[(1-S)/(1+8)]} /(2507 (2)

in which S=(1-3"2"2, and £(0)=1.

In the presence of e-p coupling, however, the
induced CDW must lead to a periodic distortion
of the molecular lattice. This is evident from the
stability condition® w,(q)6Q,(g) +(2/VN)g, 6p.,=0
which is implied by the Hamiltonian (1). Thus
6Q,(q) = (Q,,(q)) becomes nonvanishing for g =+gq,
for all n. Consequently, the total periodic poten-
tial now becomes A=V=3, A exp(ig,), where A,
and ¢, are, respectively, the amplitude and phase
(relative to the fixed phase of V) of the distortion-
induced potential (g,/VN)6Q,(q,). Clearly, the
phase of each distortion component is an open
parameter. The induced CDW assumes a corre-
sponding form 0p, =0py +2,00, exp(ig,) (the com-
ponents 6p; may be calculated in terms of the po-
tentials ¥V and A, via linear response theory,! if
required). The electronic energy states become
E,=sgn(€,)(e,2+|A]? and the stationary equilib-
rium values of A, and ¢, may be determined by
minimizing the total ground-state energy of the
arbitrarily distorted semiconductor,

N[R(0)/2]25,(A,2/X,) + 2, E (ks ~ | k1), (3)

with respect to these variables. This yields ¢,
=0and A,=(x,/A)(A-V) for all n, where

1-V/A=x1n(2¢5/| A]) (265> | Al) (4)

determines the stationary value of the total gap
parameter A=V +), A, In(4) A=), where ),
=N(0)g,2/w,(q,) is the dimensionless e-p coupling
parameter with respect to the nth phonon band

and 9(0) is the noninteracting conduction-electron
density of states. Note that in the limit V-0, (4)
still yields an energy gap: This corresponds to a
Frohlich COW state®® in which the gap is due en-
tirely to molecular distortion.

The new single-electron contribution to o(w) is
given by the previous formula for o,(w) but with
V now replaced by A. The key point of this paper,
however, is that in addition to the latter single-
electron contribution, there will arise collective
contributions associated with oscillations in the
phases ¢, of the combined lattice and charge dis -
tortions about theiv zevo equilibvium values.

Such oscillations involve a bodily displacement of
an appropriate component of condensed charge
and are therefore optically active along the chain
direction. Collective modes associated with os-
cillations in the amplitudes A, about their station-
ary values can also arise but in the present mod-
el these preserve total dipole moment and conse-
quently do not contribute to o{w). The situation
closely parallels that found by Lee, Rice, and
Anderson® for the collective modes of an acoustic-
phonon-stabilized Frohlich CDW state.

The contribution, o (w), to o(w) arising from
the phase oscillations is most conveniently cal-
culated via diagramatic techniques.*” A typical
contributing diagram is shown in Fig. 1(a) and the
sum of these yields o,(w). In Fig. 1(a) the elec-
tron lines are matrix propagators with respect to
electron states with wave vectors & +£q,/2 and k&
+£'q,/2, where £ and £'=+1. The phonon lines
are matrix propagators with respect to phonon
states with wave vectors q + {g, and q + £'q,, and
with respect to the band index n. The Dyson equa-
tions for the electron and phonon propagators are
shown in Figs. 1(d) and 1(c), respectively. One
obtains

0, (w) = —(ne?/iwm)(w/28)*f(w/28)AD,(w), (5)

where D,(w) is a phononlike propagator for the
phase oscillations,® given by

DyNw) =D Hw) +1 -{ %% fox, (6)
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FIG. 1. Diagrams defining the calculation of ¢, (w).
Diagram b shows the electron-phonon vertex.

with

E (A, /)\)w (g0 ™

Dw) = w, gy —w?—iwT,’

in which T, denote the natural widths of the orig-
inal noninteracting phonon states. The zeros of
D, (w) determine the frequencies of the collec-
tive phase oscillations. We see from (6) and (7)
that there appear a total of G collective modes,
one for each e-p coupling constant, and, accord-
ing to (5), each produces its own absorption band
in the infrared. In particular, for w <24, where
Aw/24) is real and decay of a collective mode
via the excitation of an electron-hole pair is im-
possible,” it follows from (5) and (2) that the real
part of the total conductivity o{w) = oy(w) + 0,(w) is
just

Reo(w) = (me?/wm)r(w/24A)?
X flw/24)*ImD () (8)

which describes a series of absorption bands
whose sharpnesses are limited only by the natu-
ral widths I, of the original phonon states. The
optical oscillator strengths involved here are
electronic rather than ionic in nature and signifi-
cant absorption may be expected even from a col-
lective mode whose primary association is with
the presence of a weak e-p coupling constant.
Any collective modes which appear above 2A be-
come damped via electron-hole-pair excitation,
but inspection of (5) reveals that they should give
rise to indentations in the continuous single-elec-
tron absorption envelope.® '

A useful phenomenological picture” of the col-
lective modes (valid, however, only for w <« 24)
may be evolved by conceiving that a certain num-
ber, Ns(n), of conduction electrons condense to
form the nth component CDW with a total effective
inertial mass Ny(n)m,*. For small phase dis-
placements, 8¢,, the total energy (3) may be ex-
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panded as E=E,=30 .3 1¥p, 09, 0¢,, leading to
the effective Hamiltonian

=340 22 Ns(W)m, *6¢,”
+%En2n'7nn’6¢n 5(,0,,:

for phase motion, The component phase oscilla-
tions are evidently coupled to each other, and
solution of a GXG dynamical matrix yields a set
of phase normal modes. These correspond to the
G collective modes, D,'=0, obtained in the mi-
croscopic theory. The dipole moment at any in-
stant is P,=¢,"');,N,(n)eb¢, and leads to Rest-
strahl absorption at normal mode frequencies.

Note that (5) implies an interesting “optical ef-
fect” for those phonon bands which in the absence
of e-p coupling are infrared nonactive, e.g., as
we have remarked, the symmetric intramolecular
vibrational bands. The e-p interaction, in effect,
now causes such phonons—renormalized as col-
lective modes—to become infrared active in the
chain (parallel) direction. In polarized optical
reflectance studies, then, these phonons would be
found to be “correctly” absent in the perpendicu-
lar direction but “incorrectly” present in the par-
allel direction. With V/A~0.1 and 2A~0.2 eV
assumed to be representative values, use of the
model introduced in Ref. 1 for the a, TCNQ intra-
molecular e-p interactions to solve Dq,": 0 pre-
dicts (for w <2A) shifts in the apparent @, fre-
quencies typically of the order of —10%.

In the limit w— 0 the static dielectric constant
€, of the semiconductor may be computed via the
relation €(w)=1+ (47i/w)o(w) and is found to be

€,=1+(w,/28Y[3+24/V], (9)

where w, is the plasma frequency, w,z =4mne®/m.
Equation (9) shows that €, is enhanced over the
Penn'® dielectric constant—the second term in
(9)—by a factor 3AA/2V. Note that for very
small V/A the semiconducting state corresponds
to a weakly pinned but multiphonon-stabilized
Frohlich CDW state. Such a state has been re-
cently suggested to be appropriate for TTF-
TCNQ.!

The experimental verification of the existence
in actual organic linear-chain semiconductors of
the infrared-active collective modes predicted
in this paper would have important ramifications
for solid-state physics in this area. In the first
place their observation would provide direct and
rather detailed information on the underlying e-p
coupling constants; to date there exists no known
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definitive experimental probe for these fundamen-
tal interactions. In the second place an opportu-
nity would be presented to test theoretical calcu-
lations of the e-p coupling constants and, more
generally, of the electronic band structure on
which the former are in an important way depen-
dent.'’ The present theoretical model is, of
course, too simple' to render proper justice to
this particular aspiration, but it would be possi-
ble to reperform this calculation of o(w) utilizing
a realistic model for the electronic and molecu-
lar structure of a particular organic conductor.

The observation in TEA(TCNQ), of a series of
strong infrared absorption bands polarized ex-
clusively along the chain direction was reported
some years ago by Kaplunov, Panova, and Bor-
odko,’® and by Brau ef al.’ and suggested by
these authors to be related to intramolecular e-p
interaction via a mechanism whose nature had
yet to be clarified. An analysis of the TEA-
(TCNQ), data in the light of the present theory
is currently in progress.'®> The presence of
anomalous absorption bands in the far infrared
has been very recently reported for TTF-TCNQ
by Eldridge.'®

Inspiration for this work grew, in part, from
correspondence with P, Briiesch. Earlier con-
versations with H. R. Zeller and A. J. Heeger
are gratefully acknowledged. I am particularly
thankful to L. Pietronero and S. Strissler for a
valuable scrutiny of this work. J. B. Torrance,
Jr.,'" has independently stressed the relevance of
organic linear-chain conductors to the experi-
mental study of organic intramolecular electron-
phonon interactions.
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