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We have calculated the ground-state energy as a function of density for a recently sug-
gested condensed phase of lithium impurities in silicon. The temperature-density phase
diagram of this system has been determined and it is found that the critical temperature
and density are 3.0&&10 'K and 3.5&&10' cm 3, respectively.

In this Letter we present a calculation of the
ground-state energy and thermodynamic proper-
ties of a possible condensed phase of Li impuri-
ties in Si. The existence of such a phase has re-
cently been suggested by a number of experimen-
tal results. Kastalskii and Maltsev' observed the
solid-state precipitation kinetics for a supersat-
urated solution of Li in Si by means of electrical-
conductivity and Hall-effect measurements. Sub-
sequently, Vengalis, Kastalskii, and Maltsev'
measured the infrared reflectance of a heavily
doped Si:Li system. Both experiments yielded
anomalous data which could be explained by as-
suming that the Li impurities undergo a gas-liq-
uid phase separation at room temperature for im-
purity densities between 10"and 10"cm '.

Li goes into Si interstitially as a shallow donor.
The low-lying exeitations of the donor electron
are well understood in terms of the effective-
mass approximation, " For a uniform distribu-
tion of Li impurities in Si having a density great-
er than approximately (2 or 3) &&10" cm ', the
system will be metallic, and the calculation of the
zero-temperature ground-state energy is then
analagous to a cohesive energy calculation for a
normal metal. This ground-state energy will
have its minimum at a fairly high density, n-
= 10"cm '. If the Li impurities were mobile at
zero temperature, and introduced uniformly at a
density less than n . , then the system would be-
come inhomogeneous with all of the Li in a con-
densate of density n . For a range of tempera-
tures above absolute zero, the condensate can co-
exist with a low-density "vapor" phase. Above a
critical temperature T, only one phase exists,

and the system becomes homogeneous.
As stated by Kastalskii and Maltsev, the obser-

vation of the condensed phase depends on the fol-
lowing considerations. The mobility of Li in Si
decreases exponentially with decreasing temper-
ature. ' Below a certain temperature which we
denote by T&, the Li becomes essentially immo-
bile. For the condensed phase to be easily ob-
servable, it is necessary that the phase transi-
tion occur for a range of temperatures above T&.
So a major question arises as to whether the crit-
ical temperature T, of the condensed phase is
greater than or less than the freezing tempera-
ture T&. The purpose of this Letter, then, is to
investigate the thermodynamics of this system,
and to establish a value for the critical tempera-
ture.

The initial step in calculating T, is to evaluate
the zero-temperature ground-state energy of the
condensate as a function of density. This was
done using the Kohn-Sham formulation of the den-
sity-functional formalism. Since the electronic
energy of the system is not expected to depend
sensitively on the arrangement of the Li impuri-
ties, it is convenient to imagine them as being
distributed on a periodic lattice. The electrons
are treated, within the effective-mass approxi-
mation, as moving in an effective periodic poten-
tial' consisting of the total. electrostatic potential
plus the exchange-correlation potential. The sin-
gle-particle states for this problem are then ob-
tained approximately by requiring them to satisfy
the Bloch condition on the surface of a spherical
Wigner-Seitz cell. A variational approach due to
Kohn' is used to obtain a secular equation deter-
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mining the energy for a given wave vector, k.
The density, generated from the wave functions
for energies between the bottom of the band and
the Fermi energy, is used to define a new effec-
tive potential, and the procedure is repeated to
self-consistency. The method described above
was first used by Tong' in a calculation of the co-
hesive energy of sodium.

In performing the calculations, it was conven-
ient to use the following units: The unit mass is
the density-of-states mass (md, „,) of the electrons
(0.32 times the free-electron mass); the unit of
energy, 1 Ry*=md, „,e'/(2h'~') = 33.7 meV; and the
unit of distance, a~*= h'K/(md, „,e') = 18.9 A. Here
g = 11.4 is the static dielectric constant of Si.

The energy functional we used consisted of the
kinetic energy T, [n], the direct electrostatic en-
ergy E„[n], and a local approximation for the
exchange and correlation energy E„,[n].

The kinetic energy term is approximated by re-
placing the six ellipsoidal conduction bands with
six spherical bands with the density-of -states
mass. The value of the exchange energy as a
function of density has been given by Combescot
and Nozihres' as e„=—0.478/r, Ry*. Finally,
the correlation energy for the uniform electron
gas in Si was calculated within the random-phase
approximation, including both the conduction-
band anisotropy and degeneracy (Fig. 1).

The calculated ground-state energy as a func-
tion of density is plotted as curve c in Fig. 2.
The minimum of the energy-density curve yields
an equilibrium bulk density of 2.1 &&10" cm ' at
zero temperature, and a ground-state energy per
electron-ion pair of —2. 55 Ry*. This corres-

ponds to a binding energy of approximately 1.5
Ry* relative to the isolated donor. This binding
energy per electron-ion pair is surprisingly
large, being a factor of 4 larger than the binding
energy per pair for the electron-hole liquid (EHL)
in Si. In order to illustrate the origin of the large
binding energy, we plot three curves in Fig. 2 for
the zero-temperature ground-state energy, e(r, ).
Curve a shows e(r, ) within the Hartree-Fock ap-
proximation (HFA), assuming a uniform electron-
ic density within a spherical Wigner-Seitz cell.
For curve b, we include the RPA electron correl-
ation energy for the uniform density model. Qur
final result is given by curve c, in which we allow
the electron density to relax around the Li'cores,
and includes the electrostatic interactions and ex-
change-correlation effects self-consistently with-
in the density-functional formalism. As can be
seen, the Si:Li condensate is already strongly
bound (with respect to isolated impurities) within
the HFA. The origin of the binding of the conden-
sate lies in the very strong electrostatic interac-
tion between the Li' cores and the electrons. For
example, within the HFA the direct electrostatic
energy contributes 4 times as much to the binding
as does the exchange energy. In the EHL, on the
other hand, both the electrons and holes are de-
localized and there is no direct electrostatic con-
tribution to the bulk energy. Curve b shows the
importance of correctly including the correlation
energy for the electrons which increases the

0

0

-i.o—

-0.2—

CD

LIJ

UJ -04—
C)
I—

LU

CL
CO

-0.6—

Ck

UJ

UJ

-20—

I.O 2.0

l. o 2.0 5.0
rs

FIG. 1. Correlation energy per particle for electrons
in Si conduction bands, as a function of r, . 1 Ry*=33.7
meV.

FIG. 2. Ground-state energy per electron-ion pair
in various approximations: a, Hartree-Fock with uni-
form electron density; b, Hartree-Fock plus correla-
tion energy with uniform electron density; c, self-con-
sistent calculation.
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binding energy of the condensate by 40%. Finally,
curve g shows that the relaxation of the electrons
to the ion cores increases the binding energy by
a relatively small amount, i.e., 5%%up.

In using the results for e(r, ) to calculate the
thermodynamic properties of the Si:Li system,
we note that the present calculation gives a more
reasonable result in the low-density limit than
the equivalent calculation for the electron-hole
liquid since e approaches a value of about —1 Ry*
as r, -~, corresponding to an isolated bound do-
nor. On the other hand, current calculations for
the bulk EHI conclude that e(r, ) tends to zero for
large z, rather than the correct limit of -1 Ry*
for an isolated exciton. It is therefore reasona-
ble to attempt a calculation of the phase diagram
of this system for all densities above the Mott
transition. The calculation is analogous to the
"plasma model" used for the EHL, as first dis-
cussed by Combescot. " The free energy per
electron, f, and the chemical potential p are cal-
culated as a function of temperature T and ~, .
For T=0, we have f~e and p=B(ne)/Bn, where
n is the density: n '=4m, '/3. For finite T, the
changes in f and p are calculated for a model of
noninteracting fermions assuming that only the
kinetic energy changes with temperature. Since
the calculation is done for values of T on the or-
der of the Fermi energy, we cannot use low-tem-
perature expansions for bf and b,p, but must cal-
culate these quantities numerically.

Once p(T) and f(T) are known, the pressure is
obtained using P =n(p, —f). The phase diagram is
constructed by fixing T and searching for two dif-
ferent values of r, for which the pressures and
the chemical potentials are equal. This phase
separation occurs below a temperature, T„cal-
culated to be 301'K as shown in Fig. 3. For T be-
low 200'K, the calculated density of the vapor
phase is very small; in this region, the density
of the condensed phase is determined from the
condition that P = 0. The exact behavior of the
low-density phase for low temperature is not pre-
dicted by the present calculation. In the region of
densities below about 2x10" cm ', the vapor
pressure depends on the existence of Li complex-
es, etc. , which are not considered in our calcu-
lation of e(r,)

Our calculated value of T, is indeed above the
freezing temperature Tf ——240'K reported by Kas-
talskii and Maltsev. ' However, the experimental
results of Refs. 1 and 2 seem to indicate that the
critical temperature of the condensate lies be-
tween 300 and 400 K, which is somewhat higher
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FIG. 3. Temperature-density phase diagram for the
lithium condensate in silicon.

than our approximate value of 3.0 x10"K. We
therefore mention some of our approximations
which could account for the difference. The en-
tire calculation was carried out within the effec-
tive-mass approximation, which is known to be
quite good for isolated Li impurities in Si. How-
ever, the density in the Li' core region is great-
er for the condensate than for the isolated impur-
ity. Hence, it is possible that central-cell cor-
rections may play some role in determining the
value of T, . Central-cell corrections, typically,
will make e(r,) more negative, ' and will tend to
increase the calculated critical temperature.

Another approximation in the calculation of the
critical temperature was the assumption that the
temperature dependence of the free energy was
due only to that of the electronic kinetic energy.
As noted by Thomas, Rice, and Hensel, "the
temperature dependence of the exchange and cor-
relation contribution to the free energy, f„„is
not important for temperatures significantly be-
low the plasma frequency, as is true for our T, .
Furthermore, in the Si:Li problem f„, is typical-
ly 2 of the direct Coulomb interaction. Thus the
temperature dependence of f„, is even less signi-
ficant for the determination of T, in this case
than for the corresponding EHL problem. Also
ignored were possible many-body effects, such
as electron-phonon and electron-electron inter-
actions, on the band mass. The various approxi-
mations discussed above may change the critical
temperature and density of the condensate some-
what, but are not expected to change the qualita-
tive nature of the phase diagram.

The major characteristic of the Si:Li system is
a phase separation which occurs at room temper-
ature. Although current experimental results can
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be explained in terms of this model, the experi-
mental data are not sufficient to characterize ad-
equately the fundamental properties of the sys-
tem. For example, the densities of the two phas-
es as functions of temperature are as yet unde-
termined, as are the critical temperature and
density. One experimental difficulty in observ-
ing this phase separation is the fact that at the
temperatures and Li densities of interest, the Li
ions are present at supersaturated concentra-
tions. " Consequently, the Li ions tend to preci-
pitate out of the Si at the surface and at defects
in the bulk. However, the precipitation pheno-
menon takes place much more slowly than does
the expected phase separation, so that although
the two-phase system described here is only me-
tastable, this fact should not prevent its obser-
vation and characterization.
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The temperature dependence of the electric field gradient eq(T) in noncubic metals is
calculated within a pseudopotential approach including the influence of lattice vibrations.
The resulting eq(T) factorizes into a Debye-Wailer factor and a lattice sum over screened
iona. The accurately measured eq(T)/eq(0) values for In, Cd, Zn, Sb, and Sn are quan-
titatively reproduced using known data for the lattice constants and for the mean-square
atomic displacements.

Since the pioneering work of Simmons and Slich-
ter' on In metal many more experiments have
been performed by nuclear quadupole resonance
(NQR) and perturbed angular correlation methods
to determine accurately the temperature depen-
dence of the electric field gradient (EFG) eq(T)
at a nuclear site in noncubic metals. Recently,
Heubes eI; al. ' discovered in a heuristic way that
the eq(T) data in all nontransition metals can be
well reproduced by a 7'" dependence. Attempts
to explain this temperature dependence have been
far from successful. Within the traditionally
used Ansatz' eq= (1-y„)eq; +(1 R)eq, &

one cal-—
culates the point-charge interaction of the ion
cores eq; by a Coulomb potential and separately
adds the interaction with the conduction electrons,
q„, which has been evaluated by complicated
band-structure calculations. The temperature

dependence of eq; due to the variation of lattice
parameters is much too small (and in most met-
als even wrong in sign) to explain the observed
eq(T) data.

Simmons and Slichter' and Quitmann, Nishiya-
ma, and Riegel' considered within rough approach-
es thermal lattice vibrations as a further possi-
ble contribution to eq(T), but in Ref. 1 this con-
tribution has been calculated to be negligible,
whereas in Ref. 4 the strength parameter of this
contribution was treated as a fitting parameter to
the experimental eq(T) data in In.

In this paper we present a theory by which the
experimentally observed temperature dependence
of eq(T), e.g. , in Zn, Cd, In, Sn, and Sb, can be
explained quantitatively. Unambiguous ly the tem-
perature dependence of eq(T) arises from the
temperature dependence of the lattice constants
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