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Marginal-Stability Calculation of Electron Temperature Profiles in Tokamaks
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Electron temperature profiles, turbulence levels, and anomalous transport are calcu-
lated for tokamak discharges using the hypothesis that the dissipative trapped-electron
instability drives the plasma to marginal stability.

This Letter applies marginal- stability concepts
to the calculation of tokamak profiles. The calcu-
lation is based on the idea that the tokamak tem-
perature profile adjusts itself so that the dissipa-
tive trapped-electron mode (DTEM), ' ' assumed
to be the dominant transport mechanism, is at
marginal stability. The energy from the external
circuit goes into the plasma interior, and classi-
cal loss mechanisms near the outer edge (e.g. ,
line radiation from impurities, deposition on the
limiter, etc.) remove this energy. The dissipa-
tive trapped-electron instability is assumed to
carry the energy from the interior to the edge.
If the energy input at the center, energy outflow
at the edge, and all other fluid properties of the
plasma are known, the marginal- stability calcula-
tion gives the steady-state electron temperature
and current profile. The turbulence level and the
relation between anomalous transport coefficients
can then be derived. While the energy input by
the Ohmic heating current is well known, the de-
tails of the edge loss mechanisms are not well
known. This introduces an uncertainty into this
mar ginal- stability calculation which naturally ap-
pears as an uncertainty in the central tempera-
ture.

If some external mechanism drives the plasma
toward an unstable state, an instability will be
generated which then fights the external mecha-
nism, driving the plasma back toward a stable
state. If the instability is sufficiently strong, the
plasma is maintained near marginal stability. If,
on the other hand, some nonlinear mechanism"
limits the fluctuations to a level smaller than that
computed by our marginal-stability analysis, the
resulting transport would not be sufficient to
maintain the plasma at marginal stability. To
evaluate this possibility requires nonlinear calcu-
lations of fluctuation levels with assumed unstable
profiles. Here we adopt the marginal- stability
hypothesis and explore its implications. Our cal-
culations do in fact show that the mode amplitudes
are small [Fig. 1(a)], thus lending credibility to
the marginal-stability theory. Furthermore, the
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FIG. 1. Computed quantities for a Princeton large
torus discharge assuming n(r)/n(0) =expf —(r/O. es) 3),
with Te (0) = 3 keV and T& (0) = 1.5 keV and a toroidal
field of 50 kG. (a) Electron temperature profiles for
q'(a) =3 (solid line) and q(a) =5 (dashed line); (b) values
of k p;, and (c) values of e cp/T, as a function of r/a;
(d) an assumed form for the electron thermal conduc-
tion for use in a tokamak transport code.

marginal-stability hypothesis also works well in
other plasma situations such as predicting the be-
havior of resistive shocks" and mirror machines. '4

Recent particle simulations of both drift" waves
and trapped-electron instabilities" also show that
the initially unstable distribution function does re-
lax to one which is marginally stable. During
this relaxation process, the transport coefficient
can be either greater" or less" than y/k' de-
pending on how easily marginal stability can be
achieved.

In this calculation we use the simplest theory
of the DTEM and so our model is corresponding-
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ly limited, yet the results we obtain are encourag-
ing. We intend to treat such factors as drift reso-
nances' and other complicating effects on the
mode, as we1.1 as edge energy-loss mechanisms,
in a future paper. The growth rate of the DTEM
is taken as

y, /&u: =[1+2(T&/T~)]O. (2)

Here &™,the shear parameter, is the density-gra-
dient scale length I „divided by the shear length
L,,=(r/Rq2) '(Bq/ar) '. The tokamak safety factor
is q =r&~/R&e. Also we assume that q; =1. We
note that y, is not precisely known for a tokamak
since the mode structure is bvo-dimensional. We
use here the standard expression for one-dimen-
sional mode structure.

For the plasma to be at marginal stability, the
shear must just stabilize the most unstable mode.
It can be shown that the maximum value of Im{[3
—(v /v, ) ][1+i(v«/u&o)] ') is 0.348 at &u/v«(v, ')
=0.125. Thus the marginal-stability condition re-
lates T, to q:

1+ ' — —= —0.25q'2T, ' (3)

If the resistance is classical, J,(r) =J,(0)[T,(r)/
T,(0)]'I2. Then using Faraday's law and q(0)
=cB[2mRJ,(0)] ', we obtain another equation re-
lating q(r) and T,(r),

(4)

2 1+ g Vqy (ds (de

where &. is the drift frequency taken equal to the
wave frequency (valid for small & =r/R, and k'p&2

«1), q, , &
=d lnT„;(r)/d inn(r), angular brackets

denote an energy average, and v«=v(v')/e, where
v(v') is the 90'-scattering collision frequency for
an electron with speed v. In Eq. (1) y, is the
shear-induced damping rate' 4;

We integrate Eqs. (3) and (4) for q and T, outward
to the limiter (r =a) starting with r = 6r and q = 1
+ 6q", S' is chosen without loss of generality to be
0.1a. Inside r & 0.1a, with q near 1, the energy
transport is provided by internal-kink modes,
not included in this treatment. [The need to in-
voke internal kinks near r =0 is reflected in our
equations by the presence of a singularity of the
coupled equations at r =0. One can prove from
Eqs. (3) and (4) that the only solutions well be-
haved at r =0 are q =const, T, =const. ] The val-
ue of 6q then serves as an eigenvalue and is se-
lected to give q a particular value at the limiter.
Notice that q(a) is determined by the total plasma
current and hence by the external circuit. Solu-
tions for T,(r)/T, (0) using typical Princeton large
torus parameters are shown in Fig. 1(a). The
eigenvalues &q are chosen so that q(a) =3 and 5.

Notice that the central temperature T,(0) scales
out of both Eqs. (3) and (4) so that Eqs. (3) and (4)
are not sufficient to determine T,(0). This is to
be expected, since q' and the growth rate in this
model depend only on the shape of the tempera-
ture profile and not on the temperature itself. To
determine the central temperature, one could ex-
ploit the fact that the dissipative trapped-electron
instability transports energy from the center to
an edge region of large classical losses. The
condition which determines the central tempera-
ture is that the power loss from the edge equals
the power input at the center. The power input
due to the Ohmic heating decreases with T, as
T, '". The power loss from the edge region,
while not easy to specify exactly, almost certain-
ly increases with edge temperature [e.g. , radia-
tive loss, or electron energy loss to the limiter
which scales as n(a)T, '"(a)]. Therefore, the cen-
tral temperature can be found by balancing input
and output power. We will not pursue edge-loss
mechanisms further here, but will simply assume
a central temperature.

From quasilinear theory, the energy flux Q, and
total particle flux E„are"

Q, J e '~'~ ey(k) 'cT,„",—,'mv2 (u.q, (-,'mv'/T, —g)&v 2 2 v«() v dv

At steady state, the equation for the energy flux is

d
Q

Qe - |~( )
n(T+ —T ~)

V J Teq

where 0 is the conductivity of the plasma and v, ~
is the electron-ion temperature equilibration
time. Other bulk sources and sinks of energy

(i.e., charge exchange, neutral beams, ete.)
could easily be included in Eq. (6) ~ The result
would be a different value of Q„and therefore of
ey/T„and a different central electron tempera-
ture. However as long as Q„as solved for by
Eq. (6), is everywhere positive (clearly there

287



VOLUME 37, NUMBER 5

v

PHYSICAL REVIEW LETTERS 2 AUGUST 1976

can be no steady state if Q, &0), the temperature
profile T,(r)/T, (0) would be unchanged.

To proceed, we specify all fluid parameters ex-
cept the electron temperature profile and current
profile. The results are shown in Fig. 1(a).
Since the spectral energy is concentrated in the
marginally unstable mode (whose h value is given
by to./v, t =0.125), one can solve for ey/T, from
(5). The results are shown in Figs. 1(b) and 1(c)~

With ey/T, known, E„can be found from Eels. (5).
The energy confinement time [which scales as
T,'"(0)]7s = pV) 'Jan(T, +T,) d'r is 0.27 sec for
the calculated temperature profile for q(a) = 5.
The particle confinement time at radius x is de-
fined as 7~ = Jo"n(r')2~r'dk'/2~rE„(r). 7~(r) turns
out to be a decreasing function of r. For instance
r~(0.3a) =1.2 sec while 7~(a) =250 msec.

Let us now examine the question of whether the
'temperature profiles we have calculated are in
fact dynamically stable. Imagine that we perturb
the temperature profile toward a stable state so
that the instability is suddenly turned off. Then
the plasma will heat for a time df' and the amount
of additional energy going into the electrons is
proportional to T,

' I(s)r. If the current drift veloc-
ity is larger than the sound speed, "so that only
a small fraction of the Ohmic energy is lost to the
ions by electron-ion temperature equilibration,
it is a simple matter to show that the change in
T, ' dT,/dr is proportional to T,'I2n '(t), —2) dn/
dr. Thus if g, & 2 the temperature profile steep-
ens, while if g, &2, it broadens. The time for
growth of the unstable waves is short compared
to the current diffusion time. Thus. the instability
occurs while the current (i.e., shear) is frozen.
Hence steepening the temperature gradient brings
the instability back, while broadening it turns it
off. Therefore, if g, &2, the temperature profiles
we calculate are dynamically stable states, while
if g, & 2, the profiles are unstable, and never
form. Notice from Fig. 1(a) that rt, & 2 for the
case where q(a) = 5, but not for q(a) = 3. In the lat-
ter case the dissipative trapped-electron mode
would not saturate by evolving toward marginal
stability. It would either saturate at a higher lev-
el through other nonlinear mechanisms (and hence
anomalous transport would be enhanced), and/or
a new profile would try to form with a larger q(a)
(i.e., lower total current).

Let us close with a brief discussion of how both
to find and to test the marginal-stability hypothe-
sis with the use of tokamak transport codes." To
do so let the appropriate transport coefficient,
for instance the electron thermal conductivity,

depend on some parameter (for instance shear)
in the way shown in Fig. 1(d). The lower part of
the curve is the classical value, while the upper
part to the left is some large value which comes
from a nonlinear or turbulence theory. The sharp
transition occurs at marginal stability. 's The
transport coefficient will not necessarily be given
by the upper, turbulent value. Bather the profile
can adjust itself to be near marginal stability.
Then the transport coefficient will adjust itself to
whatever point on the nearly vertical part of the
curve it needs to maintain marginal stability.
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The equilibrium stability criterion for diffuse interfaces in a two-component solution
with a miscibility gap requires that the interdiffusion flux vanish. If the system is con-
tinuously deformed, convective fluxes disrupt the equilibrium in the interface regions
and induce a counter diffusive Qux, which is dissipative and contributes to the apparent
viscosity of the mixture. Chemical free energy is recoverably stored, causing visco-
elastic phenomena. Both effects are significant.

The interfaces separating two phases in a two-
component solution having a miscibility gap are
often diffuse, the composition varying smoothly
from phase to phase. More generally, diffuse in-
terfaces are found (or are believed to exist) in a
number of important types of multiphase systems,
including liquid-gas mixtures near the critical
point, phase-separated glasses, block copoly-
mers, and various ordering systems. Such inter-
faces are described approximately by the theory
of Cahn and Hilliard' (or some modification of it),
in which the interface profile is determined by a
variational principle minimizing the free energy,
including a contribution from "gradient" energies.
The basic concepts of the theory have been ex-
tended and appear to be confirmed experimental-
ly. ' If a system containing diffuse interfaces is
continuously deformed, convective fluxes disrupt
the thermodynamic equilibrium in the interface
regions and induce a counter diffusive flux, which
is dissipative and contributes to the apparent vis-
cosity of the mixture. In addition, chemical free
energy is recoverably stored, giving rise to a
viscoelastic behavior. In the present paper, a
theory of this effect is developed in outline and
applied to a simple case. '

The theory is conceptually closely related to
mode-mode coupling theories of the excess vis-
cosity of solutions just above the consolute tem-

perature. ' ' The present theory provides an ap-
proach to the more complicated two-phase sub-
critical region. The theory is classical in the
sense that the critical point singularities of the
free energy are ignored; however, it is known"
that these can be incorporated into the diffuse-
interface theory upon which the present analysis
is based. It seems, therefore, that the present
treatment can be extended, without qualitative
change, to include the singularities.

The following additional simplifying assump-
tions are made: The molar volume is indepen-
dent of composition; the solution is isotropic
when uniform; the composition dependence of the
viscosity is ignored; and the temperature changes
due to dissipation are negligible. The dimensions
of the various quantities are defined in a foot-
note. ' The theory is developed in detail only for
a single flat interface and then applied naively to
more complex situations. '

In gradient-energy theories, ' the Helmholtz
free energy is written as an integral over thevol-
ume of a free energy per unit volume of the non-
uniform solution, f*(r), and that f*(r) depends
only upon the local composition and all of its spa-
tial derivaties Expandin. g f* in the composition
gradients, one eventually obtains' f*(r)= [f(C)
+KVC &C] ~„-, where e is a positive constant, and
f(C) is the free energy per unit volume of a uni-

289


