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Various nonlinear evolution equations that have been solved by the two-component in-
verse-scattering method are shown to be associated with the motion of certain simple
types of helical curves. The linear eigenvalue problem that is usually postulated for
solving these equations is found to follow quite incidentally from the standard intrinsic
equations that govern the motion of space curves.

It has been shown by Hasimoto' that the intrin-
sic equations governing the curvature and torsion
of an isolated thin vortex filament moving without
stretching in an incompressible inviscid fluid may
be reduced to a nonlinear Schrodinger equation.
The single-soliton solution of this equation' pro-
vides a description of an isolated loop of helical
motion along the vortex line. In obtaining these
results, the Serret-Frenet equations play an aux-
iliary role with respect to the nonlinear Schro-
dinger equation that is analogous to the one played
by the Bloch equations in determining soliton be-
havior in coherent optical pulse propagation. '
The Bloch equations, of course, have the struc-
ture of a single component of the vector Serret-
Frenet equations. The many similarities in the
properties of the various soliton equations tempt
one to conj ecture that other equations exhibiting
soliton behavior may also be related to helical
spece curves and that such geometric considera-
tions may play a fundamental role in understand-
ing soliton propagation. Furthermore, an asso-
ciation of nonlinear evolution equations with geo-
metric concepts of a somewhat more abstract na-
ture has already appeared. 4 Qne's expectations
in this matter are also enhanced by the recogni-
tion that equations of Serret-Frenet type lead di-
rectly' to linear equations of the form used to

n, =7b-zt, (1c)

where the subscript denotes partial differentiation

solve the various soliton equations by the two-
component inverse method. "Geometric inter-
pretation of these equations could thus provide a
natural motivation for the introduction of the in-
verse-scattering approach that would be analo-
gous to that already provided by the Bloch equa-
tions in coherent optical pulse propagation.

It has been found that the so-called sine-Gordon
equation may be associated with curves of con-
stant curvature and that this curvature is related
to the eigenvalue parameter in the inverse-scat-
tering formulism. The modified Korteweg-de
Vries equation, on the other hand, may be asso-
ciated with curves of constant torsion, the tor-
sion playing the role of eigenvalue parameter.
For the nonlinear Schrodinger equation, bothcur-
vature and torsion may vary, and it is the asymp-
totic value assumed by the torsion at large dis-
tances from the disturbance that is the eigenval-
ue parameter.

The spatial variations of a twisted curve are
governed by the Serret-Frenet equations

t, =En,
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N, + iwoN= —(t, (2a)

with respect to an arc length parameter s. The
functions v(s, t) and 22(s, t) are the torsion and

curvature, respectively, while t, n, and b are the
usual tangent, normal, and binormal to the curve.
Also, t=X, (s, t), where X(s, t) is the position vec-
tor to a point s on the curve at time t. If it is as-
sumed that the torsion T approaches a constant
value T, in regions of the curve that are remote
from the disturbance in question, then Eqs. (1)
may be combined to yield

come one of the standard nonlinear evolution
equations. At the same time Eqs. (2) and (6) re-
duce to the linear equations solved by the two-
component inverse-scattering method.

Reduction to the inverse-scattering equations
follows upon the recognition that any of the three
scalar components of Eqs. (2) and (6) possess the
first integral X'+ t' = 1, where A is now some one
component of N and similarly for t. Setting K = u
+iv and following a standard procedure" one
may factor this first integral and write

t= 2((~N+ gN*), (2b)
u+it 1+v
I —v u —it (10a)

where

N =—(n+ ib) exp I if ds'(~ —w, )],
g -=~ expI if ds'(~ —T,)].

(3a)

(3b)

Following Hasimoto, one may express the tem-
poral variation of N and t as linear combinations
of N, N*, and t, i.e.,

N, = o.N+ PN*+ yt,

t, =XN+ p, N*+ vt.

(4a)

(4b)

For the position vector, one may write X, =~(gn

+bulb)+8t

or, equivalently,

X, = C*g*N+ CgN*+ Bt, C = z(t+ i'll). (5)

Multiplication of Eqs. (4) by N and t and use of
the relations N ~ N*=2, N ~ t =N ~ N=O yields o.
+ &*=0, p= v=0, andy= —2p, . Hence

N, = iRN+yt,

t, = ——,'(y*N+yN*),

(6a)

(6b)

q, +y, +i(T,y -Ry) =0,

R, = 22(yg*-y*4).

Similarly, the requirement X„=X„yields

(7a)

(7b)

where R(s, t) is real. Equating mixed second de-
rivatives from Eqs. (2) and (6) one finds'

u —gt 1+5
p 0}C

1 -e u+it (10b)

j. - 1v„= ziy„v, + 2(iy, —R)v„

v „=(iy; +R)v, —2 iy„v2,

(12a)

(12b)

where y=v, /v, ,
In like manner, the spatial dependence of Eq.

(2) is equivalent to

V~ = —2 2$„V~+ 2(-2( ~ +1O)V2,

V 2~
= —2 (2 tfJ2 + 'To)V ~ + 2 2 („V2.

(13a)

(13b)

In a similar way, the alternative factorization (u

+ iv)/(1 —t) = (1+t)/(u —iv) = p, etc. , leads to the
pa, irs

vent

22Rv j + 2 fy*v2, (14a)

When this one component of the Serret-Frenet
equations (analogous to the Bloch equations) is
expressed in terms of y and X one obtains the
Riccati equation

et+ 2yrV+ '(2yi -R)V' —2(2yc+R) =0&

where y =y„+ iy;. An identical equation obtains
for X. If this Riccati equation is replaced by a
pair of first-order linear equations instead of the
usual second-order equation, one finds

—-'y = (C4). + 2T.C4+ .8 0, -

Combination of Eqs. (7b) and (8a) gives

(8a.)

(8b) and

v2t 2 ~yvl+ 2 ~Rv2&

1 j.
V~~ —22 TOV ~

= —2$*V2',

(14b)

(15a)

R.=n. I qI' - 22'(q*q. —(y.*)+ w I pl.'+ 2~.~. (9)

Equations (7) and (8) provide six equations for
the eight functions contained in R and 0 and the
complex terms g, y, and C. This indeterminacy
may be used to specialize certain of these quan-
tities to yield simple space curves, as well as to
simplify the analysis. Equation (7a) can then be-

1 ~ j.
Vgs+ 2 21pvg 2gy' (15b)

The factorization (v +it)/(1-u) etc. , could also
be considered but will not be employed here.
When the functions y and R have been chosen to
reduce Eq. (7a) to a specific evolution equation,
either Eqs. (12) and (13) or (14) and (15) imme-
diately provide the familar linear systems that
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are customarily associated with these equations
in an ad hoc manner for solution by the inverse
method.

(i) Curves of constant curvature: sine-Gordon
equation. In—this instance p=n, exp(io), where
Kp is the constant value of the curvature and 0,

(Considerations are further specialized to
the case v, = 0.) If one sets y; = 0, then R = o, ac-
cording to the imaginary part of Eq. (7a). From
the real part of Eq. (7a), y„=f (t) an arbitrary
function of time. Then Eq. (7b) yields R, =n,f(t)
x sino. Introducing the new time coordinate dt'
= n,f (t) dt one obtains

o„i= sino, (16)

More simply, one may choose y„=const (=y„,)
and then set y„pKp=1. Kith these values for y, R,
and g, Eqs. (12) and (13) become the equations
used to solve Eq. (16) by the inverse method with
the eigenvalue parameter equal to I/2~, .

(ii) Curves of constant torsion: modified Korte
zoeg —de Vries equation. —For curves of constant
torsion (=r,), g in Eq. (3b) is seen to be real.
Equations (7a) and (Sa) are readily combined to
yield an equation for g involving third spatial de-
rivatives. The simplest assumption of g = con-
stant is found to be inadequate for nonsteady-
state propagation. Setting q = 7.,+p and then ex-
ploiting the above-mentioned indeterminacy to
impose the requirement (pg), + rgb = 0 (since this
expression arises repeatedly in the analysis),
one obtains the equation g, +2)'g, +g„,=0 with
y„= 2 g'+ g„+v, 'g, y; = —7',g, , and R = 27', tp+ 7,'.
With g =2u, these expressions in conjunction with
Eqs. (14) and (15) become the standard results
for the modified Korteweg-de Vries equation.

(iii) An integrable expression for R, : nonlinear
Sch~odinf, e~ equation. —As a simple example in
which neither curvature nor torsion is assumed
to be constant, one may ask for a choice of pa-
rameters that permits integration of the expres-

sion for R given in Eqs. (7b) or (9). An obvious
choice is f = 0, g = const = g, . Then R = —,qoI gI

'
+ I"(t), where I'(t) arises from integration. Also,
y = iq,(,+ (v,q, + 8)(. A standard form for the non-
linear Schrodinger equation follows by setting Qp
=2 and choosing 8(t) =4r, and I'(t) = —2r, ' T. hen
R = I/I' —2v, ' and y = —2ig, —2r,g with g satisfying

(17)

Equations (14) and (15) yield the usual linear
equations associated with the nonlinear Schrodin-
ger equation.

The motion of helical curves, along with pro-
viding a three-dimensional context for soliton
propagation, leads quite naturally to the systems
of linear equations that are solved by the inverse
method. Consideration of solitons in the context
of torsional waves also provides motivation for
associating vanishing reflection coefficient with
soliton propagation. This result is analogous to
that found previously in coherent optical pulse
propagation. ' Such topics will be considered sub-
sequently.
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