Photoemission from Metallic Cesium Oxide Films

G. Ebbinghaus, W. Braun,* and A. Simon Max-Planck-Institut für Festkörperforschung, Stuttgart, West Germany

and

K. Berresheim Leybold-Heraeus, Köln, West Germany (Received 7 October 1976)

Ultraviolet photoelectron spectra of Cs evaporated onto Ag and oxidized under ultrahigh-vacuum conditions have been measured. Time variation of the spectra indicates the formation of Cs suboxides (e.g., $Cs_{7}O$, $Cs_{11}O_3$). The high infrared photoelectric yield of Ag/O/Cs cathodes can be explained as due to the excitation of surface plasmons in these compounds.

The infrared sensitivity of Ag/O/Cs photocathodes has been interpreted in terms of different mechanisms, such as defects in the lattice of Cs_2O formed during the production process of Ag/O/Cs cathodes,^{1,2} as well as photoemission from silver.^{3,4} All of these interpretations generally link the photoemission in the infrared region to the low work function of one of the cesium oxides.⁵ Cathodes with an excess of cesium (compared to Cs_2O) show the highest infrared yield. Composition and thickness of the Ag/O/Cs layers as well as the electron emission process are still a matter of dispute. Bulk samples of metalrich cesium oxides (suboxides, e.g., Cs₇O, $Cs_{11}O_3$) have recently been investigated by ultraviolet photoelectron spectroscopy (UPS).⁶ It has been shown that the spectra reflect compositions and crystal structures of the bulk compounds.⁶

We report here UPS measurements of thin films of cesium deposited on a silver substrate and oxidized under ultrahigh-vacuum (UHV) conditions, simulating the active layers in Ag/O/Cs (S-1) photocathodes. The spectral response of films prepared in this way is similar to S-1 cathodes according to Heimann *et al.*⁷ The UPS data of these films are almost identical to those of the bulk cesium suboxides.⁶ A comparison with bulk data yields information about the composition of the films, the layer thickness, and the low-energy photoelectron emission process.

The measurements were performed at room temperature in a Leybold-Heraeus LHS 10 ESCA system equipped with a preparation chamber and a differentially pumped cold-cathode gas-discharge lamp using the HeI resonance line ($h\nu$ = 21.2 eV). The residual gas pressure in the analyzer chamber was 2×10⁻¹⁰ Torr. Evaporated silver served as a substrate and was etched by argon-ion bombardment. The photoelectron energy distribution curve of this sample is shown in Fig. 1(a). The energy scale is relative to the Fermi edge; the resolution is 0.1 eV. The photoelectron spectrum of Cs evaporated for 3 min at 390 K onto the Ag substrate at room temperature is shown in Fig. 1(b). Oxygen was leaked into the analyzer chamber (basic pressure $p = 2 \times 10^{-10}$ Torr) at a partial pressure of 5×10^{-7} Torr for

FIG. 1. Photoelectron energy distribution curves for silver, a cesium layer on silver, and reaction products with oxygen.

FIG. 2. Photoelectron spectra from Cs and the cesium suboxides Cs_7O and $Cs_{11}O_3$ (see also Ref. 11). The inset shows a $Cs_{11}O_3$ cluster.

20 sec, corresponding to an oxygen exposure of 10 L (1 L = 10⁻⁶ Torr sec). The spectrum recorded immediately after this procedure is given in Fig. 1(c). When the sample was left in the analyzer chamber $(p_{\text{He}} \approx 1 \times 10^{-7} \text{ Torr during mea-}$ surements; 99.999 + % purity of He), the measured spectrum changed continuously and reached a final form after 50 min [Figs. 1(d), 1(e)].

Structure due to photoemission from the 4*d* bands of the Ag substrate^{8,9} (in the energy range 4 to 7.5 eV) is observed in all of the spectra. This fact indicates a film thickness of less than 10 Å, as deduced from the short mean free path of electrons in Cs.¹⁰ In the oxidized samples, photoemission from the 4*d* bands of the substrate increases with time, suggesting either a reduction of the layer thickness, island formation within the oxide layer, or both.

The spectrum 1(b), recorded from the evaporated Cs film, is equivalent to that of pure bulk⁶ Cs in Fig. 2.¹¹ The structures of the two spectra show the filled conduction band (CB) of Cs followed by an energy loss ($\hbar\omega_{sp}$), an Auger transition (O_{III} VV) and the spin-orbit split Cs5p levels (B,B'). The addition of oxygen leads to three new peaks (O 2p, A, A^{i}). These significant changes correspond definitely to cesium suboxide formation. Peaks A and A' strongly increase with time, accompanied by a decrease of the intensities of B and B'.

Cesium suboxides contain characteristic ion clusters of composition $Cs_{11}O_3$ shown in the inset of Fig. 2.¹² In the stoichiometric compound $Cs_{11}O_3$,¹³ which is stable at room temperature, these clusters are close-packed.¹⁴ The compound $Cs_7O \equiv [Cs_{11}O_3]Cs_{10}$ consists of $Cs_{11}O_3$ clusters intercalated with a stoichiometric amount of cesium.¹⁵ If a melt of Cs₇O is kept in vacuum at room temperature, Cs evaporates, leading to crystallization of $Cs_{11}O_3$.⁶ Cs_7O contains Cs atoms in two different bonding states.¹² Those in the clusters are partly ionic; the others are purely metallic. Consequently, two pairs of Cs 5p levels appear in the UPS spectra. Peaks A and A' in Fig. 2 correspond to the 5p levels of Cs incorporated in the $Cs_{11}O_3$ cluster, where B and B' refer to the intercalated cesium. In the spectrum of the compound $Cs_{11}O_3$, only the peaks A and A' are observed. The very sharp structure at 2.7 eV is due to photoemission from the nonbonding O 2p levels.⁶ This characteristic peak was already observed by Gregory *et al.*¹⁶ who interpreted it in terms of "oxygen atoms dissolved in the cesium metal" without considering the formation of metallic suboxides.

The appearance of the structures O 2p, A and A' in Fig. 1(c) (Ag/Cs/O) indicates that the oxygen exposure is followed by the formation of some $Cs_{11}O_3$ clusters in the films. From the relative intensities of peaks A and B it can be concluded that Cs is still present in large excess to the clusters. The photoelectron spectrum taken after 20 min indicates a composition of the film which corresponds approximately to the stoichiometry of Cs_7O [Fig. 1(d)]. This change is due to the continuous loss of cesium. Further loss of Cs causes peaks B and B' to disappear. The remaining Cs 5p levels A and A' indicate that the film is composed mainly of $Cs_{11}O_3$ clusters. The filled conduction band (CB) as well as the very sharp O 2p peak, characteristic of all compounds containing the $Cs_{11}O_3$ clusters, definitely exclude the formation of (semiconducting) Cs₂O which shows only one broad valence band.^{16,17} The observation of the characteristic O 2p peak in the photoelectron spectrum of an Ag-Cs₂O-Cs photocathode by Neil and Mee¹⁸ is further evidence for suboxide formation in S-1 photocathodes.

All Cs suboxides are metallic. Plasma frequen-

FIG. 3. Quantum yield of Mg and Al, normalized to their surface-plasmon energies, and comparison to the S-1 quantum yield, which is normalized to the surface-plasmon energy of $Cs_{11}O_3$ ($\hbar\omega_{sp}=1.55$ eV). The data were taken from Ref. 21 (Mg, Al) and Refs. 22-25 (S-1).

cies can easily be deduced from the energy-loss structures in the UPS spectra. With HeI radiation $(h\nu = 21.2 \text{ eV})$ as an excitation source, we observe surface-plasmon losses (see $\hbar\omega_{sp}$ in Fig. 2). With He II radiation $(h\nu = 40.8 \text{ eV})$, both surface- and volume-plasmon energy losses could be separated. The decrease of the surface-plasmon energy of the Cs suboxides with respect to bulk Cs is caused by a lower electron concentration as discussed in detail in Ref. 6. The observed plasmon energies are 2.0, 1.75, and 1.55 eV for Cs, Cs₇O, and Cs₁₁O₃, respectively.

Surface-plasmon decay¹⁹ has been used to explain photoemission from free-electron-like metals, e.g., Li and Na,²⁰ Mg, and Al, as well as from (Cs/O)-activated Ag.²¹ If the photoelectricyield curves²¹ of Mg and Al are plotted versus excitation energy normalized to $\hbar \omega_{sb}$ (7.7 eV for Mg and 10.5 eV for Al), the yield maxima are found near unity in the reduced energy scale (Fig. 3). Similarly, the spectral responses of some commercial S-1 cathodes²²⁻²⁵ are plotted (curves a-d in Fig. 3). The energy scale is reduced to the $\hbar \omega_{sp}$ of $Cs_{11}O_3$ (1.55 eV), since $Cs_{11}O_3$ clusters have here been proved to be the main constituent in the active layers of such cathodes. From the positions of the maxima in Fig. 3 we conclude that surface-plasmon-induced photoemission from metallic cesium-suboxide layers (especially $Cs_{11}O_3$) is the origin of the infrared sensitivity of S-1 photocathodes.

The present results are confined to Ag/Cs/O layers. Further investigations on all bulk cesium oxides and their chemical reaction with the substrate materials are necessary to understand the completely different UPS spectra of oxidized cesium layers on III-V (e.g., GaAs) substrates.^{17,26}

We thank Professor H. J. Queisser and Professor M. Cardona for helpful discussions.

*Present address: Fachbereich 4, Universität Osnabrück, Osnabrück, West Germany.

¹J. E. Davey, J. Appl. Phys. <u>28</u>, 1031 (1957).

²P. Görlich, Advances in Electronics and Electron Physics (Academic, New York, 1959), p. 1.

³A. H. Sommer, *Photoemissive Materials* (Wiley, New York, 1968), p. 163.

⁴P. G. Borzjak, V. F. Bibik, and G. S. Kramerenko, Izv. Akad. Nauk SSSR, Ser. Fiz. <u>20</u>, 1039 (1956) [Bull. Acad. Sci. USSR, Phys. Ser. 20, 939 (1956)].

⁵J. J. Uebbing and L. W. James, J. Appl. Phys. <u>41</u>, 4505 (1970).

⁶G. Ebbinghaus, W. Braun, and A. Simon, Z. Naturforsch. <u>31b</u>, 1219 (1976).

⁷W. Heimann, E.-L. Hoene, S. Jeric, and E. Kansky, Exp. Tech. Phys. <u>21</u>, 193, 325, 431 (1973).

⁸D. Eastman, in *Metals*, edited by R. F. Bunshah (Wiley, New York, 1972), Vol. 6, Pt. 1, p. 411.

⁹N. J. Shevchik and A. Goldmann, J. Electron Spectrosc. Relat. Phenom. <u>5</u>, 631 (1974).

 10 I. Lindau and W. E. Spicer, J. Electron Spectrosc. Relat. Phenom. <u>3</u>, 409 (1974), and references therein.

¹¹All spectra in Fig. 2 were recorded with a Vacuum Generators ESCA 3 system and have been corrected for the transmission function of the analyzer.

¹²A. Simon, in Crystal Structure and Chemical Bonding in Inorganic Chemistry, edited by C. J. M. Rooymans and A. Rabenau (North-Holland, Amsterdam, 1975), p. 47.

¹³A. Simon and E. Westerbeck, Angew. Chem. <u>84</u>, 1190 (1972), and Angew. Chem., Int. Ed. Engl. <u>11</u>, 1105 (1972), and to be published.

¹⁴E. Westerbeck, Ph.D thesis, University of Münster, 1976 (unpublished).

¹⁵A. Simon, Naturwisschenschaften <u>58</u>, 622 (1971); Z. Anorg. Allg. Chem. <u>422</u>, 208 (1976).

¹⁶P. E. Gregory, P. Chye, H. Sunami, and W. E. Spicer, J. Appl. Phys. <u>46</u>, 3525 (1975).

 17 G. Ebbinghaus, W. Braun, and A. Simon, to be published.

¹⁸K. S. Neil and C. H. B. Mee, Phys. Status Solidi (a) $\underline{2}$, 43 (1970) [see energy distribution curve for $h\nu \approx 5.00$ eV in Fig. 4(c)].

¹⁹J. G. Endriz and W. E. Spicer, Phys. Rev. B 4,

4159 (1971); J. G. Endriz, Phys. Rev. B 7, 3464 (1973). ²⁰J. Bösenberg, Z. Phys. B22, 267 (1975).

²¹S. A. Flodström, G. V. Hansson, S. B. M. Hagström, and J. G. Endriz, Surf. Sci. <u>53</u>, 156 (1975); J. G. Endriz, Appl. Phys. Lett. <u>25</u>, 261 (1974).

 ²²H. A. Stahl, in Proceedings of the Sixth International IMEKO Symposium on Photon-Detectors, Siofok, Hungary, 1974 (IMEKO, Budapest, Hungary, 1974), p. 71.
²³M. Srinivasan, B. M. Bhat, and N. Gorindarajan, J. Phys. E 7, 859 (1974).

²⁴H. J. Jüpner, Ref. 22, p. 409.

²⁵W. E. Spicer and R. L. Bell, Publ. Astron. Soc. Pac.

<u>84</u>, 110 (1972). ²⁶P. E. Gregory and W. E. Spicer, J. Appl. Phys. <u>47</u>, 511 (1976).

ERRATA

SPIN-FLIP RAMAN ECHO IN *n*-TYPE CdS. P. Hu, S. Geschwind, and T. M. Jedju [Phys. Rev. Lett. 37, 1357 (1976)].

The wavelength ω_L on Fig. 1(b) should read " $\omega_L \sim 4905.26$ Å." On page 1358, column 1, the seventeenth line from the bottom should read "...two longitudinal modes ω_L and ω_R , where $(\omega_L - \omega_R)/2\pi = 32$ GHz."

EXACT SOLUTION FOR THE INFLUENCE OF LASER TEMPORAL FLUCTUATIONS ON RESO-NANCE FLUORESCENCE. G. S. Agarwal [Phys. Rev. Lett. 37, 1383 (1976)].

In the process of printing Ref. 6 was changed. This reference should read as follows: J. H. Eberly, in Proceedings of the Symposium on Resonant Light Scattering, Massachusetts Institute of Technology, Cambridge, Massachusetts, April 1976 (to be published).