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modulation R/u of approximately 5X10 ' and a
wavelength of 1.5 mm at the laser interaction
volume located 135' around the torus from the
wave guide. We scanned wavelength from 1 mm

to I cm at positions of I from the center of the
plasma to the limiter radius and did not observe
the driven wave. The estimated sensitivity was
greater than the expected level of fluctuations by
a factor of 5.

In the ATC, the thermal ion feature in the scat-
tered spectrum is expected to be peaked near 400
MHz for a 1-mm-wavelength fluctuation. Scatter-
ing was not observed from this feature and this
implies the absence of an ion-acoustic wave tur-
bulence during the ATC discharge at levels larger
than ten times the thermal level.

We wish to acknowledge the collaboration of
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Hasegawa has called to our attention that at values of
n/n of 10 the nonlinear coupling of radial and poloidal
modes through the E(k, u) xB&drift of ions can produce
an effective frequency shift comparable to the drift-
wave frequency [A. Hasegawa, Phys. Lett. 75A, 143
(1976)]. This might explain both the observed frequency
spl cad at fixed wave vector and the lsotrop1c natul e of
the turbulence in the plane perpendicular to Bz.
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I have considered the two-body problem in a uniform magnetic field. For the case of
like-particle collisions, a resonance between the velocities transverse to the magnetic
field of the test and field particles reduces the problem to that without a magnetic field
for the relative-velocity scattering angle and scattering cross section. This resonance
condition results in large changes in the test-particle collisional parameters. A secon-
dary resonance for like-partic1e and resonances for unlike-particle collisions have also
been found.

The binary collisional scattering and the related collisional parameters of a plasma in a magnetic
field are important for the transport, ' ' heating, and magnetic confinement" of thermonuclear plas-
mas in open-ended as m'ell as toroidal configurations. The transport of intense relativistic electron
beams, radially confined by their self-pinch magnetic fields, through gas-plasma media over long dis-
tances, 9 as well as the interaction of intense electron beams with virtual cathodes in the presence of
externally applied magnetic fields' also depend on the binary collisional scattering. Previous treat-
ments"'" of the binary collision problem in a magnetic field have been approximate, to the extent that
ultimately only the maximum impact parameter is altered from the Debye length Xn to an appropriate
average Larmor radius p, whenever p, &~D, thus resulting only in small changes in the value of the
Coulomb logarithm.

I start with a test particle of mass m „charge q„velocity v„and position r, and a field particle of
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corresponding parameters m&, qz, v&, and r&. I define the reduced-mass and center-of-mass varia-
bles:

rr =rr rr~ Vr =Vr —Vfq mr =mrmr/m~~

r, = (m, r
&

+ m
& rr)/m „v,= (m & v& + m ~v~) /m „m, = m, + m &.

The equations of motion for the reduced mass and center of mass are found from the single-particle
equations of motion:

(l)

(2)

E + +v q' "+ XB

dvq mg pl)
'dt ' ' " ' m, m, )XB,

q, E, =- V, U(lr„l); U =q,q&/4neor„; B = F,B,
(4)

(5)

a&here B is the applied magnetic field and &, is the vacuum permitivity in mks units. I have solved Eqs.
(3) and (4) numerically on the computer. Certain properties of the complete solution can be predicted
from the Lagrangian of the two-particle system and the canonical angular momentum,

I.= ~m „v„2 + am, v,~ —U(l r„I) —a Eqr (mr/m 3' +qf(m r/m Ã(r. x B)'v.

—z(q&m&/m —q&m&/m )((1„xB)v +(1 xB) v„)- 2(q&+q&)(r xB) v .
I use cylindrical coordinates (p, 8,z, f~,fe, f,) for both the reduced mass and center of mass, with ap-
propriate subscripts, to find the canonical angular momentum. For the case of like-particle collisions,
the reduced and center-of-mass motion are decoupled and I find

Pe = mp„8 2rq+gp„/24= ocn ts, Pe, = m, p,28, +q,Bp,'=const.

In the absence of the magnetic field the equa-
tions simplify substantially and reduce to the clas-
sical two-body problem of Kepler. For easy lat-
er comparison I summarize the results in Fig. 1
and below. The reduced-mass and the center-of-
mass motion are completely decoupled. The re-
duced-mass particle remains on its initial 8 plane.
The scattering angle g, in terms of the impact pa-
rameter b, and the Rutherford scattering cross

1.0-
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FIG. 1. Heduced-mass trajectory in the p-z plane.
The scattering center is located at the origin, p„=z „
=0. The trajectory for the case of zero magnetic field
is indicated by the solid line for g-0 and the cross (x)
points for z & 0. The impact parameter is b =10bo and
the scattering ar)gle is 11.42'. The trajectory with the
same initial conditions but for B =1 T is given by the
curve with dots. The guiding-center trajectory, after
scattering, is shown by the dashed curve (p&z). The
azimuthal plane of p~|.- has advanced from 0=0 before
to 8 =7t/2 after the collision. The parameters chosen
to find the Debye length ~D are electron density 10' /
cm3 and electron temperature 100 eV.
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FIG. 2. Resonance curves for electron-electron col-
lisions for B =1 T.
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section o are given by

g =2 cot '(b/b, ), b, =q/q, /4((e, m„v„', v(g, i)„) =b,'/(1 —cos g)'. (8)

For the ca.se of like-particle collisions (q, =qf, m, = m~) the reduced-mass and the center-of-mass
motion are decoupled but their respective equations of motion include the Lorentz force. Numerical

solution of Eq. (3) together with dr„/dt = v„shows that when initially the component of velocity perpen-

dicular to the magnetic field is zero, v&„=0, v„= z,v„ then after the collision the reduced-mass parti-
cle has velocity components

v„„=z.v, cosg, Iv. „'I = (), sing, (9)

in agreement with the values predicted by Eq. (8). Figure 1 shows details of a typical trajectory. When

initially v~„t0 then the scattering angle in the collision quickly goes to zero, as shown in Fig. 2. In

Fig. 2 there is plotted the normalized scattering angle (g, —g;)/(, versus the initial ~(/~„/v))„~, where ((
is the initial angle and g, is the final angle of the velocity vector as per Eq. (9), and g, is the Ruther-

ford scattering angle. Off-resonance scattering becomes so small, on account of the dominance of the

Lorentz force, that a double-precision code would be necessary for its study. I have concluded, there-
fore, that in order for a binary collision to occur, the resonance condition

vg~ =vgg —vlf =0 (10)

has to be satisfied. The scattering cross section is then given by the Rutherford cross section of Eq.
(8). From Eq. (7) and conservation of energy I find

b2
~r 2+cr p 1 s +cr q( /2 r)-p

2b0 , 2 2
b' dp„

0 i 2 2il/2 & C~ Pt' 2 +
LPr +~r ) p

(12)

which reduce to the cia,ssical trajectory when II -0. The resonance condition of Eq. (10) also elimi-
nates the Larmor radius as a relevant maximum impact parameter, and hence the Debye length AD is
retained as a maximum impact parameter. In the curve for b =10'b, in Fig. 2 and at ~v~ „/v„, (

= 10 ',
there is evident the existence of a secondary resonance peak superimposed on the primary resonance
curve. This secondary resonance occurs when the Larmor radius, p(, = v, „/&u,„, equals the impact pa-
rameter. For modest magnetic fields, & ~ 1 T, the secondary resonance appears as a small perturba-
tion on the primary resonance while for large magnetic fields, B =10 T, it provides a more substantial

(15% higher peak) secondary resonance peak to the primary resonance. " The scattering angle in the

secondary resonance exceeds that predicted by Rutherford" and the related scattering cross section is
being investigated.

The effect of the primary resonance alone (valid for J3 ~ 1 T) on the test-particle collision frequency
for momentum transfer for a nonstreaming bi-Maiavellian ((/«, v(),) distribution of field particles is
found" from Eq. (16) of Siambis and Stitzer, "together with the resonance condition of Eq. (10) included

as a 6 function:

( (Ui)&m=4((~ (~~i@)&y)spexP(-(z, /v )'), „,/U ),
(13)

(v (v())f = F (v (Ull ())y sp exp[- (vz(/vl o) ] v)) ( /v)) o 3

(14)vi, =- v»m~/m, .
This resonance condition gives the following val-
ues for the initial test- and field-particle veloci-
ties transverse to the magnetic field: v&, =0,
v~f = —v~„. Numerical solution of Eqs. (3) and (4)
shows that when vlf=0 as well, then the scatter-

where the subscript Sp stands for the Spitzer val-
ues. '" Note that the "thermal" like-particle col- found to be
lision frequency is equal to 1.5 times the Spitzer
value. The existence of resonances and resonance
effects in like-particle binary collisions has been
suggested by Longmire. "

For the case of q, = —q&, I,&~&, the resonance
condition that initially decouples the reduced-
mass motion from the center-of-mass motion is

1752
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ing of the relative velocity is given by Eq. (9),
where g is the classical angle and the Rutherford
cross section applies and one obtains a primary
resonance. %hen the impact parameter for the
reduced-mass motion equals the Larmor radius
of the field particle, then a secondary resonance
is found superimposed on the primary resonance.
For very large impact parameters, A, D & b» ho,
and for very small values of g& and from a small,
nonexhaustive set of computed trajectories one
finds that (,' = P&'+ P,'.

For the case of q, =qz, m, &mz, the resonance
condition that initially decouples the reduced-
mass motion from the center-of-mass motion is
found to be

tion, as opposed to the cases of B =0 and of like
particles with &+ 0, where the reduced and center-
of-mass motions are decoupled and the effect of
the scattering potential is of lower order in the
reduced-mass trajectory. It appears, therefore,
that a new reference frame will be needed, free
of the strong coupling found in the center-of-
mass-reduced-mass frames of reference for
unlike-particle collisions, which will also per-
mit study of the binary collisional interaction of
test and field particles under conditions less re-
strictive than those given by Eqs. (14) and (15).

The author is indebted to Ira Bernstein for in-
struction on Lagrangian mechanics and to Niels
Winsor for useful discussion.

This resonance condition gives the following val-
ues for the initial test- and field-particle velocit-
ies transverse to the magnetic field: v~, = v, „,
v~&=0. Numerical solution of Eqs. (3) and (4)
shows that when v~, =0 as well, then the scatter-
ing of the relative velocity vector is given by Eq.
(9), where g is the classical angle and the Ruther-
ford cross section applies and one obtains a pri-
mary resonance. %hen the impact parameter for
the reduced-mass motion equals the Larmor ra-
dius of the test particle, then a secondary reso-
nance is found superimposed on the primary res-
nance.

For the cases given by the resonances of Eqs.
(14) and (15) 1 have also numerically computed
trajectories whose initial coordinates do not sat-
isfy the primary and secondary resonance condi-
tions. For these cases I find that there is a very
strong coupling between the reduced-mass and
center-of-mass motion both in the absence and
presence of the scattering potential. The equa-
tions are essentially driven by the "Lorentz force"
that provides the coupling. This strong coupling
makes the motion slowly varying or adiabatic and
reduces the scattering effects, due to the scatter-
ing potential, to higher order in the coupled mo-
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