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Ke propose a description of the vacuum in Yang-Mills theory and arrive at a physical
interpretation of the pseudoparticle solution and the attendant violation of symmetries.
The existence of topologically inequivalent classical gauge fields gives rise to a family
of quantum mechanical vacua, parametrized by a CP-nonconserving angle. The require-
ment of vacuum stability against gauge transformations renders the vacua chirally non-
invariant.

A classical pseudoparticle solution to the SU(2)
Yang-Mills theory in Euclidean four-dimension-
al space has been given by Belavin, Polyakov,
Schwartz, and Tyupkin, ' with the suggestion that
it be used to dominate the functional integral
which describes a quantum field theory continued
to Euclidean space. 't Hooft' has shown that
these nontrivial minima of the action give non-
vanishing contributions to amplitudes which would
be zero in the ordinary sector. Specifically in
a theory of fermions coupled to Yang-Mills fields,
with chiral U(1) and CI' symmetries, symmetry-
nonconserving effects are found through the pres-
sence of the axial-vector-current anomaly. ' Thus
he provides a possible resolution of the long-
standing U(1) problem and an intriguing sugges-
tion for the origin of CI' nonconservation. The
phenomena are 0(exp(- Sm'/g')), where g is the

gauge coupling constant; they are nonperturba-
tive.

The fact that the classical field configuration
which is responsible for the new results is in
Euclidean four-dimensional space, i.e. , imagi-
nary time, leads one to suspect that the pseudo-
particle is associated with quantum-mechanical
tunneling by which field configurations in the ordi-
nary three-dimensional space are joined in the
course of the (real-time) evolution through the
penetration of an energy barrier. ' Also the expo-
nentially small magnitude is indicative of tunnel-
ing. Here we wish to present a further explana-
tion of this point, which we hope, will clarify the
physical interpretation of the pseudoparticle solu-
tion and will supplement 't Hooft's more formal

computations. Our considerations lead to a de-
scription of the quantum mechanical vacuum
state of a Yang-Mills theory which is unexpected-
ly rich.

In the quantum field theory, a state of the sys-
tem can be represented by a wave functional
%[A] of the field configuration. Having in mind a
Yang-Mills theory, we have taken the potentials
A(x) (anti-Hermitian matrices in the space of the
infinitesimal group generators) as argument of
the functional, excluding the time components
A'(x), because they are dependent variables. In
defining scalar products and matrix elements of
observables one must avoid infinities associated
with the volume of the gauge group. Without re-
peating details of the well-kown gauge-fixing pro-
cedure, let us only recall that it removes from
the functional integral over A configurations of
the fields which can be joined by a continuous
gauge transformation to configurations already
counted. In particular, one does not integrate
over potentials of the form

A(x) =g '(x)vg(x), (1)

where g is the unitary matrix of a gauge transfor-
mation that can be joined to the identity through
a one-parameter continuous family of transfor-
mations g(x, a):

g(x, 1)=g(x); g(x, 0) =I.
The potentials of Eq. (1) are of course gauge
equivalent to A=O.

But it is important to realize that there are val-
ues of A that can be obtained from each other by
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gauge transformations which cannot be continuously joined with the identity transformation. For in-
stance, we may consider

x —A. 2jh.g ~ x
g,()--„, ~, --,

which gives origin to

A(x)=g, '(x)Vg, (x)= ~, , [o(X -x )+2x(o x)+2Axxo] (4)

and of course to vanishing field strengths I' „
Values of the potentials like those of Eq. (4), al-
though gauge equivalent to A = 0, should not be re-
moved from the integrations over the field config-
urations by the gauge fixing procedure, and in-
deed we shall argue that physical effects are as-
sociated with them.

Before proceeding, let us characterize the
classes of gauge-equivalent, but not continuously
gauge-equivalent, potentials. We study effects
which are local in space and therefore, when we
consider a gauge transformation g, we require

g(x) (, (

Thus g defines a mapping of the three-dimension-
al space, with all the directions at ~ identified,
into the group space. From the topological point
of view, the Euclidean space Z' with points at ~
identified is equivalent (homeomorphic) to a
three-dimensional sphere S'; but the manifold of
SU(2) is also homeomorphic to S', so that@ de-
fines a mapping

S3 S3.

It is known that these mappings fall into homotopy
classes (mappings belonging to different classes
cannot be continuously distorted into each other)
classified by an integer n,

g„(x)= [g,(x)]"

with@, given in Eq. (3) being a representative of
the nth class.

We can make contact now with the pseudoparti-
cle solution. ' Observe that the field configura-
tion of Eq. (4) has zero potential energy, and that
there is no energy-conserving evolution of the
system which adiabatically connects that configu-
ration with A = 0. Such an evolution should be a
continuous gauge transformation; but this is im-
possible because g, and the identity belong to dif-
ferent homotopy classes. All paths joining the
two field configurations in real time must go over
an energy barrier. To exemplify this, let us mul-
tiply the potentials of Eq. (4) by &

—n and increase

n adiabatically from —2 to+ &. Now the field
strength is nonvanishing, but proportional to &

—a'. The energy, —8 fd'x TrF,&I'"~0, becomes
proportional to (a2- ~)' and exhibits a barrier
shape as o. varies from —2 to 2.

In the quantum theory, tunneling will occur
across this barrier. It is well known that a semi-
classical description of tunneling can be given by
solving the classical equations of motion with
imaginary time, thus achieving an evolution which
would be classically forbidden for real time. '
The pseudoparticle solution' serves precisely
this purpose: It carries zero energy (the Eucli-
dean stress tensor vanishes); it can be arranged
to connect@=g, at g4=-it=-~ withg=I atx4=~.
The physical implication of the pseudoparticle
solution is that the quantal description of the vac-
uum state cannot be limited to fluctuations around
any definite classical configuration of zero ener-
gy.

I et us now describe in greater detail the nature
of the vacuum wave functional. Consider any of
the field configurations

A„(x)=g„'(x)Vg„(x) (8)

with vanishing I ". Neglecting tunneling effects
we might expect the vacuum to be of the form

g„[A]=cp [A —A„],

where the wave functional q is peaked about zero
and has a spread due to quantum fluctuations and
any A„can be chosen as representative of the
classical vacuum, i.e., the classical zero-energy
configuration.

But the pseudoparticle solution connects A„with
A„+„giving origin to tunneling between the differ-
ent g„. The true quantal vacuum state will there-
fore be a superposition of the form

%[A]=Z„~„P„[A)+O(exp(- 8~'/g')). (10)

To determine the coefficients c„ in this equation
let us observe that the finite gauge transforma-
tion g, changes P„ into P„+,. Requiring the vac'-
uum state to be stable against gauge transforma-
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tions determines the coefficients to be

c =e'
n

Thus we find a family of vacua, parametrized by
an angle 0, where under the gauge transformation

we[A];e ' we[A]. (12)

The occurrence of multiple vacua is intriguing
and is reminiscent of the situation encountered in
the Schwinger model. '

The significance of the phase 0 in Eqs. (10) and

(11) becomes apparent when massless fermions
are coupled to the Yang-Mills fields. One may
then introduce the U(1) axial-vector current

which however is not conserved because of the
anomaly. ' A conserved, but gauge-variant, cur-
rent is given by

p g p 4~ 2g pvOLB
5 5

x Tr(A, 8 A. e+-', A„A~A e) (13a)

may be given. The tunneling process between ad-
jacent vacuum components g„[A] and g„+,[A] is
equivalent to a gauge transformation g, which
changes Q, —Q, by two units; see Eq. (14). But

Q, is conserved, and therefore sQ, = —2.
Finally, we remark that, whereas in the mass-

less case conservation of Q, renders all vacua
degenerate, we expect that if the fermions are
massive, so that Q, is no longer conserved, dif-
ferent values of 8 define nonequivalent theories
as in the Schwinger model. ' A nonzero value of
0 could describe CP nonconservation, ' but in the
theory as developed thus far there is no indica-
tion how to compute O.

We are happy to acknowledge our indebtedness
to G. 't Hooft, whose calculations made our ob-
servations possible. We also thank S. Coleman
and L. Susskind for discussions.

Added note. —After completion of this manu-
script, we received a paper by C. Callan, R. Dash
en, and D. Gross (to be published) who arrive at
conclusions similar to ours.

and the conserved axial charge is

Q = Jd'xZ' (13b)

To exhibit the gauge dependence of Q„we per-
form a finite gauge transformation@, with
g(x) = I, and find

bQ, =
l~

d x Tre),.„(g '8;g)(g '8;g)(g 's„g)

dp, (g) =2n,
7t

where dp, (g) is the invariant measure of the group
and n is the integer which characterizes the homo-
topy class of g. (g belongs to the nth homotopy
class when it is continuously deformable to g„.)
The fact that Q, commutes with the Hamiltonian,
and that it changes by two units under the gauge
transformationg„ together with Eq. (11), im-
plies that

exp( 2 & 9'Qg)4'e[A] = 4e+ ei[A] (»)
which in turn shows that all the vacua are degen-
erate in energy and define the same theory. Equa-
tion (15) also demonstrates the possibility of sym-
metry breaking without Goldstone bosons: This
may provide a solution to the U(1) problem. "'

An explanation of the nonconservation of the
gauge-invariant fermionic axial charge

Q~(f) = Jd xcT~ (t, x)

*This work is supported in part through funds provid-
ed by the U. S. Energy Research and Development Ad-
ministration under Contract No. E(11-1)-3069.
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Two-particle correlations are studied as a function of tg2, the square of the difference
of the four-momentum of the particles. We observe that the m. ~ correlation differs
from the m x+ correlation only at low values of t&&. This difference can quantitatively be
understood as a consequence of Bose-Einstein statistics.

Short-range correlations for particles produced
in high-energy inclusive reactions are known to
exist. Various models for multiparticle-produc-
tion processes, e.g. , clustering, ' have been con-
sidered to account for the observed correlations.
These models yield correlations arising from dy-
namical production processes which have a range
of 1-2 units of rapidity and are essentially inde-
pendent of the azimuthal angle between the trans-
verse momenta. Both of these features are ob-
served for correlations involving unlike pions;
when the pion pairs have like charges, however,
a striking narrow correlation (width -0.4 units of
rapidity) for small azimuthal-angle separation is
observed. "' It has been suggested that this nar-
row correlation may be a Bose-Einstein (BE)
symmetry effect, ~ rather than a consequence of
charge-structure dynamics in particle production.
Experimental evidence supporting this explana-
tion has so far been lacking. We present here an
analysis which shows evidence for the presence
of both dynamical and BE symmetry effects for
like charges.

The data presented here are obtained from s P
interactions at 200 GeV/c using the Fermilab 30-
in. bubble-chamber, wide-gap spark-chamber hy-

brid system. Experimental details have been re-
ported elsewhere. ' The data sample consists of- 17000 events of all topologies.

The normalized two-particle correlation func-
tion is given by

R(y y y q q )
-t 2(y»»~+~Q»Q2) ]

Vi(yi, Qi) ai(y2, Q2)

Here p, and p, are the two-particle and single-
particle densities, respectively, y is the center-
of-mass-system rapidity, Q is the magnitude of
the transverse momentum, and the azimuthal an-
gle y is defined by cosy =Q, Q,/Q, q, . We inte-
grate Eq. (1) over y, and consider the resulting

(Rby, y, q„q,), where by =y, -y, . We denote
the correlations for s s (like charges) and for
m m' (unlike charges) as R(- -) and R(-+), re-
spectively.

In Fig. 1, we present R(- —) and R(-+) as a
function of by for various choices of y and Q.
The values of R, summed over all Q, and Q„
are shown for three regions of y (0'-45', 45'-
135, and 135 -180 ) in Figs. 1(a) (like charges)
and l(b) (unlike charges). As noted in Ref. 2,
R(- -) and R(-+) manifest different characteris-
tics in the cp dependence of the rapidity correla-


