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Fully self-consistent and relativistically exact solutions for the equilibrium of a non-

neutral, cold, relativistic, electron beam in a magnetized conducting pipe reveal that the
beam is neither of uniform density nor a rigid rotor when total momenta and energy are
uniform. The profiles are simple rational functions of the radius. Voltage-current-mag-
netization characteristics are obtained, showing a maximum current and a cutoff in mag-
netization for fixed injection voltage.

Equilibria of cold, nonneutral, relativistic,
electron beams' have often been derived from a
force-balance equation that represents one con-
straint on three distributions, typically those of
density, rotation, and axial velocity. Equilibri-
um and stability analyses usually assume that the
beam has a uniform density profile or rotates
rigidly. ' Such assumptions lead to equilibria con-
strained to have specific, nonuniform distribu-
tions of momenta and energy. The fully self-con-
sistent, relativistically exact calculation below
instead prescribes that all electrons are to have
the same total (mechanical plus electromagnetic)
momentum and energy. This is found to allow
neither a rigid rotor nor a uniform density of the
beam. '

An infinitely long, nonneutral, cold, relativis-
tic electron beam propagates inside a circular
conducting pipe, confined by an externally im-
posed axial magnetic field, B,. The evacuated
pipe has radius a, while the coaxial beam extends
to radius r, where it has a sharp edge. The beam
streams axially with mean velocity v =Pc and ro-
tates about the axis, driven by the combined elec-
tric and magnetic fields. The fields expected in
this system include a radial electric field E„(r)
due to the nonneutralized charge, an azimuthal
magnetic field B~(r) from the streaming current,
and an internally generated axial magnetic field
B,(r) due to the rotation of the beam. These are
derivable from an axisymmetric potential that
has both axial and azimuthal components.

Space-time points are identified by a position

four-vector x with imaginary temporal compo-
nent x4=ict. The mean velocity four-vector of '

the beam, u„, has nonzero components u3
andu, =icy, where@=(1 —P') ~'. The cross
product with the axial unit vector is expressed
by the antisymmetric tensor Z 8 whose nonzero
components are Z» = —Z» = —1. The four-poten-
tial, A (x), that corresponds to the expected field
pattern is

(e/m)A„(x) =p(r)u +q(r)((A/2)Z„sxs,

where (-e/m) is the ratio of electron charge to
rest mass and a, = (e/m)BO is the cyclotron fre-
quency in the applied magnetic field. The two un-
known radial profiles, p(r) and q(r), are to be
determined self -consistently. In the absence of
the beam, there is only the applied uniform mag-
netization, expressed by p = 0 and q = 1.

The four-potential satisfies the boundary con-
ditions at the surface of the conducting pipe for
any profiles p, q. It also satisfies the Lorentz
gauge condition BA„/Bx„=0. The inhomogeneous
wave equation is hence

B Aa/BxsBxs = —poZ,

which yields the four-current density, Z„(x), that
accompanies and generates the potential,

e 1d dp
p'0 Jn g uI x dz dh
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—p.,(e/m)J„(x) = [(up'(r)//c'] v „(x), (4)

where &u~ (r) is the plasma frequency correspond-
ing to the invariant density. As is true for any
four-velocity, the flow field must satisfy the con-
straint

This has the same form as the potential and sat-
isfies the continuity equation BJ„/Bx =0 for any

p, q. It displays axial streaming and azimuthal
rotation and its temporal component gives the
char ge-density distribution.

The current density is provided by the beam it-
self and can hence be expressed alternatively
through the flow field v„(x) and the invariant par-
ticle density n(x), as J„=-nev, or

1 d dp v~'(r)——r —= ', p(r), (12)

The two unknown profiles p(r), q(r) are now not
independent; they are related by the constraint
(5) on the flow velocity, v„v„=-c', whichbe-
comes

p'(r) —((u,'r'/4c')q'(r) = 1,

within the beam. Additional equations relating
the profiles are now obtained by equating the two
forms for the four-current density in (3) and in
(4) with (10). This yields two differential equa-
tions for p, q, involving the density profile u&~'(r)
as a third unknown function:

v (x)v (x) =-c', (5) (13)

to conform with the principle of relativity.
A typical beam electron under the influence of

the fields in the system, represented covariantly
by the electromagnetic field four-tensor B 8
=BA /Bxa —BA8/Bx, follows trajectory x„(r)
where v is the proper time along the world line.
The equation of motion prescribed by the relativ-
istic Lorentz force law is

d'x /d~'= (e/m)B B(x)(dxs/d7), (6)

in which the field is evaluated at the instantane-
ous location of the electron, x =x(r).

The motion of each electron in the beam's self-
consistent fields must conform exactly to the flow
of the beam at the location of the electron:

dx„/dr=v (x),

where the flow field is evaluated at x =x(7). This
is the cold-beam condition; for a warm beam,
the relation holds only between the averaged
quantities. Under this equilibrium condition, the
acceleration becomes a convective derivative of
the flow field, (Bv /Bx6)v 8, and (6) becomes

g2 +y2
p(r) R2 r2

4c R'
C

(14)

(15)

Equations (11)-(13)are three simultaneous,
nonlinear differential and algebraic equations for
the three unknown profiles p(r), q(r), and &u~ (r).
They determine all the equilibrium properties
self-consistently and allow no arbitrary selec-
tions of density or rotation profiles. The Bessel-
function solutions4 to (12) and (13) when a uniform
density is presupposed are not compatible with
(11). Similarly, a presumption of a rigid rotor
is also inconsistent with the three equations.

The profiles that solve the three equations are
simple rational functions of the radius. The solu-
tions become singular at a certain radius, g, a
parameter or integration constant of the equa-
tions. The singularity cannot, of course, appear
within the beam. Inside the beam, for r ~rp the
solutions are

Bv„B[(e/m)A„] B[(e/m)A, ]'Vg = 'Ug — 8g.
BX8 8X8 8Xct

(8)
+4

P(r)=R2
( 2 2)2 ~ (16)

In view of (5), a solution for v„(x) is evidently
given by the potential field within the beam,

v (x) = (e/m)A„(x). (9)

This is also the condition for the vanishing of the
canonical four-momentum of the system for this
equilibrium.

This solution allows the flow field to be ex-
pressed directly as

Between the beam and the pipe, the density is
zero and p(r) and q(r) satisfy the linear equations
obtained by setting &u~(r)=0 in (12) and (13). They
are matched to the internal solutions by imposing
continuity of the fields at the boundary r =r, . The
external solutions, for r, ~ r ~ a, are ~~'(r) = 0
and

R r,'+4R -r, 'ln(r/r, )

v (x) =p(r)u„+ 2q(r)(u, z„sxs. (10) (18)
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where Q = (4cR'/~, )/(R' r-,')'.
The parameter R, which must exceed the beam

radius ro, is determined by known system prop-
erties, such as the applied magnetization B,. The
axial magnetic field is the B» component of the
electromagnetic field tensor,

Outside the beam, this is only the applied magnet-
ization, B„whi ch requires Q = 1 in (18). R is
hence obtainable from the applied magnetic field
through

The first term is an axial drift and the second,
expressible in terms of trigonometric functions,
represents circular rotation. In the laboratory
frame, this is helical motion about the axis with
pitch l(r) = 4&(c/&u, )yPp(r)/q(r) and rotation rate

dy/dr (u, q(r) 2cR/y
dt/d7 2y P(r) R +r' (25)

There is shear in the rotation velocity; the beam
is not a rigid rotor.

The beam is also not uniform in density. As
given by the temporal component of J~ (x), the
particle density in the laboratory frame is

&gp, ro/4, =ro/R[1 —(r /R)~]2 (20) n, (r) =,'y(u~'(r)p(r) =--, (28)

The accelerating voltage applied between cath-
ode and pipe is (yz —1)mc'/e, in terms of the injec-
tion energy. A beam electron traveling along the
axis has been accelerated by voltage (y-1)mc'/e.
The temporal component of the four-potential
gives the additional potential difference between
pipe and beam axis as y[P(a) —p(0)]mc'/e. The
applied voltage is hence related to y and to R by

(21)

where p(a) is to be read from (17).
Integration of the axial and temporal compo-

nents of the four-current density across the area
of the beam yields, respectively, the total beam
current, I, and the Budker parameter, v. In
terms of the Alfvdn current IA I»Py, wher-—e I»
=4veomc'/e = 17 kA,

The electrons are evidently massed toward the
edge of the beam.

Figure 1 presents relative profiles of density,
axial magnetic field, and rotation rate for a beam
with parameter 8 = 2'. This choice corresponds
to a beam strength v/y= 0.89, an injection energy
yl= i.iy, and a confining magnetic field given by
~, r, /c =3.56. The density varies steeply, peak-
ing at the edge at 3 times the axial density. The
rotation rate drops by 20/0 from axis to edge.
The axial magnetic field is B, outside the beam
but is depressed diamagnetically inside to some-
what more than half the applied magnetization.

I v r, dp(r, ) 2(r,/R)'
Ij„y 2 dr [1 (ro/R) 2]—2 ' (22)

The transverse electromagnetic field profiles
are given by dp/dr. The axial component of the

Poynting vector integrated over the cross section
of the pipe gives the total power carried by the
fields. The ratio of this to the square of the cur-
rent is the equivalent impedance:

CD

O
O
tA

Z --"tL '+ "' 1-—' 1- ' (23)
2m P 8mP R' 3R' '

x„(T)=Pu r+exp(~&@,rqZ s)x6(0). (24)

where go=(po/eo)'i~=377 Q. The two terms are
the impedance of the coaxial beam-pipe configura-
tion and the contribution of the beam region.

The beam motion is obtained by integrating (7)
using (10). Since dx„/d7 has no radial component,
the radius r is a constant of the motion and (7)
integrates to

0-
0

Radius
"0

FIG. 1. Profiles of laboratory-frame density np(r)
(solid curve), axial magnetic field B (y) (dashed curve},
and rotation rate ~(r) (dotted curve) for a beam of ra-
dius rp in a pipe of radius a =~rp, with parameter R

2 vp
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FIG. 2. Total beam current I versus applied magneti-
zation Bo for fixed injection voltages, yz=2. 5 (solid
curve) and y&= 2.0 (dashed curve). Beam radius ra=1.5
cm, pipe radius a = 2 cm.

stituent electrons equally in requiring all to have
the same canonical linear momentum, angular
momentum, and energy, including both the me-
chanical and field contributions. The axial veloc-
ity is found to be uniform, since the axial and
temporal flow field components share a common
profile. Allowance for different profiles merely
leads to four equations in four unknowns, instead
of three, and the only solution to be found then
is identical to the one presented herein. The so-
lution can readily be extended to apply to a hol-
low, annular beam, ' with characteristics similar
to those of the full beam, but with both slow and
fast rotations permitted.

The author is grateful to S. A. Goldstein for il-
luminating discussions.

Combining the relations of the voltage, cur-
rent, and magnetization to parameter A gives
the electrical-circuit properties of the beam.
Figure 2 shows the total beam current as a func-
tion of applied magnetization, for two values of
applied voltage and for fixed geometry. Weak
magnetic fields can confine only a weak beam.
For strong magnetization, most of the energy ap-
pears as transverse rotational motion, rather
than streaming, and the current is again low.
The current reaches a peak at some optimal mag-
netization. There is an abrupt cutoff at a max-
imal magnetization at which all the applied ener-
gy is converted to circular motion. Beyond this,
the equilibrium state described here can no long-
er exist. The maximum current attainable at a
given voltage exceeds the usual predicted value'
not only because the density is not uniform but
also because its profile varies with magnetiza-
tion.

The equilibrium satisfies the cold-fluid radial
force-balance equation' but also treats the con-
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