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attenuation, loughness, etc. , 1Q the solid surfRce
make, at most, secondary contributions. The exper-
imental situation is similar for metals fJ. D. N.
Cheeke, B. Hebral, and J. Hichard, J. Low Temp.
Phys, 12, 359 (1973)].

"Vfe use for layer 2, p =0.258 g/cm, C~ =0.96 km
sec , and C& =0.48 km sec '; for layer 1, p =0.195 g/
cm3, C1-—0.5 km sec ', C&=0,25 km sec '. The re-
sults are not critically dependent upon the choice of
these values, which has been made as realistically as
possible; full details of the determination of such con-
stants and of their relative importance is given in Bef.
9. The model used here corresponds to the currently
accepted value of about 1.6 statistica1. atomic layers of
solid helium.
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m1smRtch Rlone.
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Spin-aligned hydrogen (Ht) and deuterium (Dt) are generally predicted to be stable for
X/T g 10 6/K. Magnetic-field-dependent resonances (inverse to field-induced predisso-
clRtlons of high vibrational-rotational levels of HD Rnd 02) provide exceptions to this
general rule. Their existence suggests 50 kG (Ht+D5) and 19 kG (Dt+Dt) should be
avoided for stable Ht and 0 f. Induced predissociation observations should yield ultra-
precise resonance information and dissociation limits.

Spin-aligned hydrogen (H&) and deuterium (D&) gas equilibria of this highly quantal Fermi fluid
are extremely interesting but heretofore hypo- should occur. T& is predicted to be very similar
thetical substances mith all electronic spin pro- to that of ~He. The solid phases ' and magnetic
jections (M,) parallel. Here only the lowest en- properties of these ferromagnetic substances
ergy M, is considered (e.g. , M, =--,' for Hf). Hk should also be of major interest. The energy con-
and D& are especially simple, and complete un- tent per gram of H& is higher than any knomn sub-
derstanding of all phenomena should be possible. stance; hence, it is possibly of interest for rock-
For example, H& is predicted' ' to remain a gas et propulsion" "(which is the original motiva-
down to absolute zero temperature {for pressures tion").
s50 atm where it should solidify') and to show It has been suggested'2'"9 that H& and D& mould
strong quantum behavior' characteristic of a near- be stable under low-temperature (T ~ l K), high-
ly 1deal Bose gas (1ncluding Bose-Ellis'telll coll- IllagIle'tlc-field (3C ~ 50 kG) conditions. Expel'1-
densation and superfluidity). D& is predicted to ments under roughly these conditions on D/D,
be on the verge of liquidity at absolute zero tern- mixtures' and H/H, mixtures' suggest marginal
perature and low pressures (compared to a solid- stability for partial electronic spin alignment.
ification pressure of - 8 atm), and unique liquid- The primary purpose here is to argue that long-



VOLUME 37, NUMBER 24 PHYSICAL REVIEW LETTERS 13 DECEMBER 1976

20

IO—

v(R)
C crn ') 0

-IQ—

-20—

I ~-( R„,V„)

I

I

10

— 0 (K)

-IQ

6 8 IQ I2

R (ao)

FEG. 1. Potential energy curves for X Z + (---} and
b Z„+ ( } states of isotopic H2. The three triplet com-
ponents (the lowest being Ht+Ht} are shown for &=100
kG. Note the crossing at (8„,V„}and the 'Iong-range"
levels of singlet HD(g =17,J=0} and D2{v =21,J =0}
which correspond to low-energy scattering resonances.

term stability (even at high densities) of pure Hf

and D& should occur for 3C/T & 10' 6/K (e.g. , fea-
sible combinations such as 100 mK and 100 kG).

In connection with these arguments, a new res-
onance mechanism for destruction of H& and D&

at speclflc magnetic fields ls presented. Reso-
nance occurs when the lowest-energy asymptote
of the O'Z„' potential curve (proportional to 3C)

matches the (3C-independent) energy of the high-
est vibrational-rotational states of the X'Z &'

ground-state potential curve (Fig. 1). These high-
lying levels ("long-range molecules") are of in-
terest in their own right"" since their proper-
ties are different and nonintuitive, but related to
the long-range potential (e.g. , —C,/R'). The in-
verse of the above resonant collisions, namely

the magnetic-field-induced predissociation of
long-range molecules is also discussed, with
specific regard to isotopic H, . Such predissocia-
tions should allow accurate determination of res-
onance parameters and dissociation limits.

Stability involves the rate of processes which
destroy H& (and produce recombination to H, and
destructive heating). Consider low-density gase-
ous H&, in which three kinds of collisions are of
concern: H&-H&, H&-wall, and H&-impurity. For
higher densities, three-atom (and, ultimately,
multi-atom) collisions become important.

The H&-H& collisions are governed by precise-
ly known"" potential curves (Fig. 1). (Accurate
close-coupled calculations" of these collisions
are planned. ) Recall that H has four hyperfine
states (using Brown's notation"):

I 1)= &a —H~ -
I 2) = (1 —6)+'nb + 8"'Pa,

IS)=py - Hf - I2)=(1 g)"'pa g~'2oy

Hence the collision of two H atoms involves 26
hyperfine "molecular" states. "" For H&-H&,
the posslbllltles are listed ln TaMe I. Only l.ela-
tive angular momentum J=0 and J =2 collisions
should be important at these low energies. Be-
cause M =M, +M„J, and P» (the atomic permu-
tation eigenvalue) are good quantum number, dur-
ing collision (spin-rotation coupling is negligible),
for energies below threshold only nondestructive
scattering and I S)/I 4) exchange occur. For ener-
gies above threshold, destructive processes be-
gin, but are dramatically suppressed by the small
collision fraction with sufficient energy, i.e. , by
a factor exp[ —Zr (K)/T(K)]. [Bose statistics for
H& do not modify this as exp(-Er/T) «1.] Even

TABLE I. Low-energy Ht+Ht co11isions in hyperfine states IS) or I4) con-
serve M =M~ +Mr, P&~ (the atomic permutation eigenvalue), and J (relative angu-
lar momentum}. Threshold energies Ez for channel openings at 100 kG, as well
as approximate probabil. ities P loom Ref. 16, with y =exp{-E&/T}], are given.

I:nitial Final

1 0

I 0

Is, s& —Is, s&

I4, s)) I I4, s) I

Is, s), Is, s)

I4, 4) — I4, 4)

,I I s, I&. I I, s& I,

Is, s)

284'
I —48hy —48 hP
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TABLE II. Binding energies e„&of vibration-rota-
tion levels near dissociation in HD Ifrom I. Dabrowski
and G. Herzberg, Can. J. Phys. 54, 525 (1976)] and D2
(from Ref. 12b) and corresponding threshold magnetic
fields &T for field-induced predissociation.

Species
XT
(kG)

D2

17
17
21
21

4.7j
0.0
1.803

—0,087

50.4
0.0

19.3 (

for a very high density such as 10"H&/cm' (- sol-
id H0), one estimates a rough upper bound to the
H4-Ht destruction rate (Ref. 16 withe = &) at Er
= 10 K (K= 74.4 kG) to be- 10"atoms/cm' sec at
1 K (explosive!?), -10 "at 100 mK (geologically
stable), and - 10 «'«at 10 mK (infinitely stable).
Indeed, this exponential energy factor is the key
to stable H&. Even if the selection rules (AM = 0,
r P» =0, EJ=0, and 6M~ =0) broke down slight-
ly, the destructive collisions (hM, = 1) would
still be negligible for small exp ( Er/—T) (3C/T )
&10' kG/K). Jones et al 'ma.de much of the sin-
glet-triplet crossing at (R„,V„) in Fig. 1. How-
ever, there are no energetically accessible states
of the singlet curve below the M, = 0 asymptote.
For impractically high K) 520 kG, this crossing
point becomes energetically inaccessible. " Tri-
(or poly-) atomic collisions should similarly be
limited by the exp( Er /T)-factor. Collisions
with diamagnetic impurities (e.g. , «He) and (e.g. ,
Ne-coated, though perhaps H&-covered) walls
should be unimportant because no spins are pres-
ent as well.

The only destruction mechanism found thus far
involves D& impurities. As shown in Fig. 1 and
Table II, the "long-range" v =17, J=O level of
X'Z&' HD (symbolized HD") lies only 4.71 (+-0.5)
cm ' below dissociation. At 50.4 (+-5) kG, HD"
becomes degenerate with the M, = —1 asymptote,
and hence mixing via the hyperfine interaction of
previously bound HD" and the H&-& continuum
occurs. [For H„ the highest levels (v =14, J = 0
and 1) do not become degenerate except for im-
practical fields of 1525 and 1365 kG. ] This mix-
ing has negligible effects on the potentials except
near the crossing point (R„,V,), where most hy-
perfine states show avoided crossings (M = —-',

does not). Landau-Zener-type treatments" indi-
cate triplet-singlet transition probabilities of
- 10 ', predissociative lifetimes for HD" of - 10 '

sec, and field-dependent scattering resonance
widths of -10 ' K. The precise determination of
such widths (and also energy shifts of - 10 ' K)
particularly in the zero-energy limit (where mod-
ified effective-range theory" is appropriate) is a
major motivation for the above-mentioned close-
coupled calculations.

A direct study of the field-induced predissocia-
tion would be valuable, although the predissocia-
tion linewidth itself is too sharp. Several schemes
for producing long-range levels are now contem-
plated in this laboratory. Since available magnet-
ic fields are homogeneous and stable to =-10 ' G
(corresponding to -10 ' cm '), the magnetic-
field onset of predissociation should provide ex-
ceedingly accurate binding energies of long-range
levels (e.g. , determined as frequencies relative
to proton NMR).

These Feschbach scattering resonances are
harmless themselves (i.e. , at very low densities)
since they dissociate to H&+ D&. However, they
involve long time delays"' (-10 ' sec) with ap-
preciable singlet character, as opposed to ordi-
nary nonresonant collisions with -10 "-sec time
delays and negligible singlet character. Thus,
at higher densities destructive processes such
as HD" +HO-[HD(v &17)+8&+heat] or (H, +Dt
+ heat), etc. will occur with small but signifi-
cant rates zvithout inPut energy. However, for X
»XT, the formation of HD" can be suppressed by
exp( —E„/T), where E„(K) is the resonance ener-
gy with respect to the field-dependent M, = —1 as-
symptote.

In principle, paramagnetic impurities such as
0, (in its lowest M, state) also yield resonant
destruction processes similar to (but more com-
plex than) those outlined above. An additional
complication for these species is the formation
of clusters such as (H&)„(O,&) [species such as
(Hf)„or (H&)„(D&) should not be bound' ']. For-
tunately, the vapor pressure of 0, is negligible
(e.g. , at 1 K Po =10 "Torr), but air leaks should
be avoided f

While it might be possible to prepare H& only
in the hyperfine state

~ 3), and thereby seemingly
avoid worrying about LM, =1,2 processes (Table
I), in practice b,M, = 1 processes should occur un-
less the nuclear Zeeman energy is much greater
than kT (i.e. , 3C/T )10' G/K). Thus no advantage
is expected, except possibly at low density.

Spontaneous emission was considered and re-
jected by Jones et al. ' (giving an estimated lower
bound to lifetime of 3.4x10" sec). Magnetic in-
homogeneities (and instabilities) at boundaries

1630
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could cause electronic Majorana transitions but
should be avoidable. "

High-density and, ultimately, solid H& should
not involve new destruction mechanisms. More-
over, local fields from adjacent atoms are still
small [for a. high density interatomic distance of
- 10a„3C~„,~- p. B/(10a, )'- 1 G]. Destructive spin
waves (magnons) should be unimportant for large
X/T .

Stability conditions for & are like those for
H4. There are six hyperfine states for D (three
for D&) and 36 hyperfine molecular states. "
Again, only J=O and J=1 collisions are impor-
tant (except perhaps J =2 at -1 K); and similar
selection rules should be valid; in any case, the
exp( —Zr/T) factor insures negligible spin-flip
rate for X/T ~10' kG/K. In addition to HD" (50.4
kG), there is a. D,

" resonant level only 1.80, ~ 0.20
cm ' below singlet dissociation, " corresponding
to a 19.3+ 2.0 kG threshold field to be avoided.

Stability predictions for other spin-aligned sys-
tems [e.g. , N& or (Li&)(H&)] are hampered by
lack of information on potentials and long-range
levels and by anticipated clustering. Neverthe-
less, it is expected that additional stable spin-
aligned systems can be prepared for large &/T
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