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is also shown for comparison. The lack of shear
in the stellarator should be noted, in contrast to
the tokamak case.
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Two beams of waves of finite diameters intersecting within a magnetized plasma emit
a secondary beam of waves, provided a resonance condition is satisfied. The field of
the secondary beam and the total power emitted are determined for arbitary directions
and polarizations of the incident beams. This process could be used as a means of time-
and space-resolved diagnostics since it yields two relations between the density, the tem-
peratures, and the magnetic field. Explicit formulas are given for the case of two beams
in the ordinary mode producing a lower hybrid wave.

When two beams of radiation, with ~,. and k, , j
=1, 2, intersect within a plasma, they generate
in the interaction volume a second-order polari-
zation which emits a new wave, provided that ~,
= ~, + ~, and k, = k, & k, satisfy the dispersion re-
lation b, (~„k,) =0 of this wave. In this case,
power is transferred from the primary beams to
the new beam according to the Manley-Rowe' re-
lations

5P, +5P2 =Po,

g Py 5P2 PQ
(d l 4)2 Q)0

(assuming v, & ~, &0). This process can in prin-
ciple be used as the basis of a new method of
plasma diagnostics. In order to implement this
method one of the incident beams should be fre-
quency-modulated over a range that covers the
resonance A(&u„k, ) =0. The emerging beams
will then be amplitude-modulated, allowing syn-

chronous detection. Thus one determines ~, and

k, which satisfy 6 =0, which establishes a first
relation between the density, the temperatures,
and the magnetic field within the small volume
defined by the intersection of the primary beams.
The theory also gives explicitly the power Po in
the form

Po ——M( p, )P,P~/P *,
where M(p) is a resonance factor, taking its
maximum when the mismatch p. vanishes. Thus
the measurement of the amplitude modulation
(that is, of 5P) of one of the emerging beams
yields a second relation among the plasma pa-
rameters.

The characteristic power P~ gives a measure
of the minimum power required to observe this
process. Let (5P,/P, ),„be the smallest detect-
able modulation, then one must have
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The power in the first beam can be small since
5P, only has to be above the noise. While this
establishes a lower limit for the power in one
beam, there is no such limit for the electric
fields, so that one can always avoid parametric
effects by keeping the fields below threshold.

Nonlinear mixing of waves in plasmas has been
considered in a number of papers. ' ' Except for
Ref. 9, all of them treat infinite plane-wave fields
rather than beams of finite cross sections. Mag-
netized plasmas are considered in Refs. 4 and 5

but for special choices of the wave vectors and

polarizations. References 6, 7, and 8 consider
saturation in an unmagnetized plasma when the
primary wave vectors are parallel.

In this Letter, we consider beams of finite di-
ameters of arbitrary direction and polarization
intersecting within a magnetized plasma. An ex-
plicit expression is obtained for the power trans-
ferred to the emitted beam.

The second-order polarization can be written
in «=(&u, P space as'o

6'~'"(a) = —i Q(q/m)(re~'/&u)(2v) 'f dg dg l5(g +/f —K)A„g~(K p K )E8(lc )E~(K ) p

with the summation extending over all species. " In the two-fluid theory, the matrix A is given by'

( E ll)E IE II —(~/2~ fl) 1(kl 'Ul
E /)(U&l E P)

+ (zz'u!") '(k" U' E')[(U" —1) U E'], + (&&a'&u") '(E" O' E')(U k"), .

The matrix U is defined by

n-. fl(n a)
a —i —xa—0 C0 -Q

with 0 =qB/m. The incident beams are assumed to be of the form

E,. = A,. e,. exp f —(2 n) '[y ' —(g,. ~ r )'] +jk,. ~ r —j~, tj+c.c. ,

where g, = (s~/Bk)~ and g,. = g,. /~ g,. ~; e,. is the polarization vector belonging to the mode (k,, &u,.); n is
the area of the cross section of the beam which must be large compared to the wavelength: ok, '» 1.
The total power transmitted in such a beam is

P, = nvA, . '&u,. 'i sa,./s k i,

a,. = e,. * [&u'(1+ y ) -0'+ k k] ~ e,.

and X is the linear susceptibility.
Substituting E = E, + E, into (1) and neglecting all but the terms oscillating at the difference frequency,

one obtains

6' "'(r, t) = A,A, U(r) w „exp(ik, . r —i &u,t) + c.c. ,

U(r) = exp [- (2 o. ) '(r ~ I' '
~ r)]

with

r I ' ~ r = 2r —(g ~ r) —(g ~ r)

w =-i+(q/m)((o, '/&u)(A ~„(-~„~,)e„*e,~+A, 8„(g„—a, )e, 8e, ~*]..
The far field of the wave emitted by the polarization (2) can be obtained from the asymptotic form of
the Green's function"

(u,'e e *exp(ik ~ r)
»&[»/» l~

where the vector k=k(~„r) must be so determined that A(&u„k) =0 and &&u/sk=Xr with X&0 (that is,
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the group velocity must point in the direction of r). K is the Gaussian curvature of the surface 6 =0
at the point k. Resonance means k = k, .

The total power radiated can be obtained by integrating the power flow vector

&=-I El'~, '»/sk,
over the surface of a large sphere, using only the far field. Thus one obtains

2 4

=P~P2M(P) ~, , „,a „,
l

lA~8~(- Kg) K2)8~*8g8 82y+A~sy(K2, —Kg)8~ 8288~y+l . (3)

The function M (p) is very sharply peaked at resonance and

M (iL) = (siny) '[(I'„—pK, ) (I'22 —pK, ) —I'„']"'exp(- ni»+t, ~ I' '7,).

In this last formula y is the angle behveen the group velocities g, and g„. K, and K2 are the principal
curvatures of the surface h(&u„k) = 0; t, and 7, are the principal tangents of this surface and t, =7,x f„
finally F,»

= t,. 7 ~ 7». The mismatch iL is defined by

p, I "' ~ to =k -ko.
At resonance, p= 0, M(p) is very sharply peaked due to the large value of o .

As an example I consider two beams polarized in the ordinary mode with k, ~ B=k, ~ B=k, k, =0. The
emitted beam mill be in the lower hybrid mode, provided that ~2 =~, + w, arit

&B 3p ~i &»e0=&r H+ 2 " ~2 Ti+Tg

(in mks units), where 0 ~
= 1.38X 10 "J/'K, c = 3x 10' m/s, p = &u», '/& ~ „', & = m, /m „&u~ „'= &u „'&p/(1+ p).

P* becomes
)1/2

P* =25&2 ~ » " [7' +3(1+p ')2T, ](]+p)'~ p2(p2 1)'~~

(in mks units), where p, ,=1.256x 10 Vs/Am, v=~, /+», . The minimum power required in the second
beam ls

&(& 0 ')'r l (+ —'P* ')5I'
e 1 min

(in mks units). Although one would like to reduce P, ,„as much as possible one cannot exploit the fac-
tor (v' —1)'I'. The inverse of this factor is simply the WKB approximation of the swelling of the beams
as they approach cutoff. This smelling, of course, is finite.

Choosing p =1, v=& 2, T, =T, =10' 'K, and bP, /P„=0.01, one obtains P, , „=12MW which, for a la-
ser, is not exorbitant. Equation (3) applies also for a secondary beam oscillating at the sum of the in-
cident frequencies except that the term involving A must be replaced by

I A~By(~i, ~2)e.*e iBe2y

+Aalu

y(~2 ~l)en e28elyl
'.

In this case both primary beams give up energy to the secondary beam so that such a process could be
useful as a heating mechanism vrhich does not have the defects of lower hybrid heating. Indeed it has
been shown" that lower hybrid heating suffers from parametric decay of the incoming beam vrhich

heats the plasma at the surface while depleting the beam before it reaches the center. %hen mixing
two beams one can keep their fields lour enough so as to avoid parametric decay along their separate
trajectories and yet inject enough pox er so as to convert a large fraction into a secondary wave which
vrill be absorbed.

*On leave from the Centre de Recherches en Physique des Plasmas, Ecole Polytechnique Federale, Lausanne,
Switzerland.
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Low-Energy Electron Diffraction Determination of the Atomic Arrangement
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An impurity-stabilized Si(lllj 1x 1 structure has been obtained by depositing minute
amounts of Te on a clean Si(lllj 7x 7 surface, A low-energy electron diffraction struc-
ture analysis of this 1x 1 structure reveals that the atomic arrangement is essentially
bulklike, but involves a slight contraction of the first interlayer spacing by about 15%
with respect to the bulk value.

It is a matter of considerable interest that, de-
spite the great deal of attention that has been de-
voted to Si surfaces in recent years, no direct de-
termination has been made of the atomic arrange-
ments on such surfaces. The problem of acquir-
ing such knowledge is complicated by the fact that
at least the three lowest index surfaces of Si (i.e. ,
the (001j, (110j, and tlllj surfaces) in their clean
state have structures different from those of the
equivalent bulk planes or, in the language of sur-
face crystallography, are "reconstructed. " The
Si(001j surface, for example, exhibits a so-called
2&&1 structure, the periodicity in one of the (110)
directions on the surface being twice as large as
the one on bulk 1001j planes. The vacuum-cleaved
Si(111jsurface also exhibits a 2 &&1 structure, but
the annealed Si{111jsurface exhibits a 7 &&7 struc-
ture, which has a unit mesh 49 times larger than
a bulk 1111jplane. The electronic structures of
both St(001}and Si(1llj surfaces have been objects
of extensive experimental' ' and theoretical ' in-
vestigations, while the corresponding atomic
structures have only been objects of sophisticated
speculations. ""

In recent years, a great deal of effort has been
devoted to the study of the Si(001j 2 x1 structure

by several of the groups active in LEED (low-en-
ergy electron diffraction) crystallography, ""
but no solution of the problem has yet been re-
ported. One of the most puzzling aspects of this
failure has been the unanswered question about
the basic capability of either the multiple-scatter-
ing or the data-averaging methods used in LEED
crystallography" to treat the diamond lattice
properly and accurately. Legitimate questions
have been raised, in particular, about the cor-
rectness of the muffin-tin model for the descrip-
tion of the Si lattice.

Somewhat less attention has been devoted to the
atomic structure of the Si(lllj surface, probably
because the 2&&1 superstructure requires in situ
cleaving of a Si single crystal (not a universally
available facility) and the 7 x7 superstructure is
just too complicated to handle at the present time.
However, Florio and Robertson" established a
few years ago that the Si(111j7 x7 structure re-
versibly transforms into a 1 &1 structure at 900'C
and that the 1 X1 structure can be "impurity-sta-
bilized" by minute amounts of Cl on the surface
at room temperature. Hagstrum and Becker"
reported that the 1x1 structure can be quenched
on the clean Si(111jsurface by rapid cooling from
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