
VO~UMZ $j, RUMBLER 2$ PHYSICAL RKVIKW LKTTKRS 6 DZCZMarR 1976

as can be estimated from the known piezo-optic coeffi-
cients fA. A. Giardini, J. Opt. Soc. Am. 47, 726 (1957)]
and elastic constants [R. O. Bell and G. Rupprecht,
Phys. Bev. 129, 90 (1968)]. Thus the equilibrium value
can safely be applied to fluctuations.

See, e.g. , B.J. Berne and R. Pecora, Dynamic Light
Scattering (Wiley, New York, 1976), Chap. B.

I. L. Fabelinskii, Molecular Scatter7ng of Light (Pleo-
um, New York, 1968), Chap. I.

See, e.g. , R. A. Cowley, Proc. Phys. Soc. (London)
90, 1127 (1967).

B. K. Wehner and R. Klein, Physica (Utrecht) 52, 92
(1971).

S. M. Shapiro, J. D. Axe, G. Shirane, and T. Biste,
Phys. Bev. B 6, 4332 {1972).

OK. Gesi, J. D. Axe, G. Shirane, and A. Linz, Phys.
Bev. B 5, 1938 (1972).

This expression for 8{q,0) appears to differ from
that in Bef. 9 by a factor M. This factor is needed to
convert angular frequencies to the appropriate energy
units used in Sect. II of Bef. 9. In the experimental
part of the same work the energy units are, however,
the usual ones (1 meV=1.52~10' rad/sec).

' One has m 0
= 2.65& 10 g, a = Q.9 ~ 10- 8 cm, ~„=6.6

x 10 rad/sec at T —T = 1 C, A., = 2X&
—2.8x 10 (rad

cm /sec), from Ref. 9. For the evaluation of Eq. (5)
one has (Be/BT)& =4&10 at A. =6828 A and T =T from
an extrapolation of data by B. Hoffmann, Ph.D. thesis
4009, EidgeMssische Technische Hochschule Zurich,
1968 (unpublished). Also p = 5.12 g /em~ and C& =12 cal/
'K mole from S. S. Todd and R. E. Lorenson, J. Am.
Chem. Soc. 74, 2048 (1952).

~B. I. Halperin, P. C. Hohenberg, and Shang-keng Ma,
Phys. Rev. B 10, 189 (1974), Eqs. (2.9) and (2.10).

I. Hatta, Y. Shiroishi, K. A. MGller, and W. Berling-
er, to be published.

'K. A. MGller, W. Berlinger, C. H. West, and P. Hel-
ler [Phys. Rev. Lett. S2, 160 (1974)) give an estimate
which should be considered as an upper bound (K. A.
MUller, private communication). See also, C. N. W.
Darlington, W. J. Fitzgerald, and D. A. 0 Connor, Phys.
Lett. 54A, 35 (1975).

W. Hasenfratz, R. Klein, and N. Theodorakopulos,
Solid State Commun. 18, 898 (1976).

E. F. Steigmeier, H. Auderset, and G. Harbeke, Sol-
id State Commun. 12„1077(1973).

Decoupled Tetracritical Points in Quenched Random Alloys with Competing Anisotropies*

Amnon Aharony and Shmuel Fishman
DePartment of Physics and Astronomy, Te/-Aviv University, Ramat Aviv, Israel

(Received 23 August 1976)

The phase diagram of a quenched random alloy of two components with competing an-
isotropies exhibits two critical lines, corresponding to ordering of only ~n& (or m2) spin
components. The two lines meet at a tetracritical point, where all m =m&+m2 compo-
nents order simultaneously. General scalirg arguments are used to show that the critical
behavior at this point is decoupled, i.e. , the m&- and rn2-component subsystems have sep-
arate scaling free energies. Applications and experiments are briefly discussed.

In a recent Letter, one of us studied the tetracritical point which arises in a random quenched mix-
ture of ions with competing ferromagnetic and antiferromagnetic exchange interactions. Within the
context of renormalization-group recursion relations near four dimensions, consequences were drawn
from the assumption that a certain "isotropic n =0" fixed point describes this tetracritical point. How-
ever, it was emphasized, that this assumption is probably never satisfied, because its parameters
are "unphysical. '" In this Comment we (a) generalize the physical problem of Ref. I to that of general
randomly mixed alloys upwith competing spin anisotropies, (b) use general scaling arguments (not limit-
ed to the c expansion) to study the stability of several simple fixed points, (c) conclude that a "decoup
)ed" fixed point, at uhich the free energy is the sum of taboo separate scaling functions (for each of the
competing order parameters) may describe the tetracritical point, and (d) report on some renormal-
ization-group recursion relation studies which indicate that only the "decoupled" fixed point is statute
in the "physical" region. Such "decoupled" fixed points were previously found only for pure systems
with high spin dimensionality. "We find that this behavior is the rule once randomness is introduced.

The Hamiltonian of anisotropic spin systems may be written

= —g (J„.S(i) f(j)+D, , [m, 'S, (i) S,(j) —m, 'S, (i) f,(j)J),

where f(i) =—(S,(i); f,(i)t is an m-component spin vector at the site i of a d-dimensional lattice. f, and

f, are m, - and m, -component parts of f (m, +m, =m). J,, is an isotropic exchange coupling, while D, ,
introduces an anisotropy aligning the spins in the f, (D, , & 0) or the S, (D„&0) subspaces. . This Hamil-
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tonian has recently been used as the basic model
for describing systems exhibiting bicritical and
tetracritical points. " ' As function of D„., the
system exhibits m, -component (D„&0), m, -com-
ponent (D, ,& 0), or m-component (D, , =0) Heisen-
berg-like critical behavior. The crossover from
m-component to m, -(m, )-component behavior is
described by a scaling theory, " ' which is sup-
ported by renormalization-group studies. "' '
In the present Comment, we wish to concentrate
on the phase diagram which results from the
variation of D, , by randomly mixing materials
with different values of D„..' The average D, ,
is thus a function of the relative concentration of
the two mixed materials. If the two pure com-
ponents have opposite signs of D„. then we ex-
pect a phase diagram as exhibited in Fig. 1.' ""
In fact, such a phase diagram seems to be indi-
cated by recent experiments on KMn~Fe, ~F„"
and by various experiments reviewed in Ref. 1.
The shape of such phase diagrams has been the
subject of much recent study. "' " The usual
result is that the critical lines meet tangentially
at the multicritical point. However, it has been
conjectured' that this may not be the case for
random mixtures. Indeed, at the "decoupled"
fixed point each subsystem orders at its own
critical temperature, without being affected by
the other subsystems. This leads to the two
crossing lines in Fig. 1, which are roughly
straight near the tetracritical point, where they
meet at an angle. Some experimental informa-
tion on mixed magnets seems to support this pic-
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FIG. 1. Phase diagram of a random mixture of two
components, tending to align the spins in the m&-com-
ponent subspace (D,-& & 0, with concentration p) or in the
m2-component subspace.

ture. ' An experimental study of the actual de-
tailed new scaling behavior in this vicinity now

becomes of great interest.
The argument is based on a trivial generaliza-

tion of the by now standard g —0 trick. The
free energy per spin component of the Hamilto-
nian (1) is the same as the n-0 limit of the free
energy per component of the nm-component Ham-
iltonian K,&&=K, +K,. Here, K, is the same as
X in (1), except that 5, R„and g are replaced
by (r= (5', 'P-, . . . , K"), a, =- (q', K,', . . . , '5,"), etc. ,
while P;,. and D;,. are replaced by their configura-
tional averages J,&

and D„.. If only the variable
D;,. is random, and has a correlationless Gauss-
ian distribution with second cumulant b,~ for each
bond ij, then

&, = g(u»[a, (i) a, (j)]'+2u»[a, (i) a(j)][a,(i) a, (j)]+u»[a,(i) a, (j)]'j, (2)

with u» ———b a/2k ~Tm, ', u» ———m, u»/m» and u2,
= (m, /m, )'u». If J, &

is also random, then R, re-
mains unchanged in form, and only the coeffi-
cients u, , assume new values. If the distribution
is not Gaussian, then higher powers of the spins
appear in (2). For our purposes it is sufficient
to consider the leading terms, which already ap-
pear in (2). The higher-order terms are less
relevant. "

If X, —= 0, then the Harniltonian K, reduces to n

decoupled identical nonrandom Hamiltonians of
the form (1). For D, , =O, these lead to isotropic
m-component critical behavior. If D, , & 0, these
imply isotropic nonrandom m, -component behav-
ior. If X,, 10, then only the first term in K, must
now be considered. This is exactly the term con-
sidered previously for random isotropic ex-

!
change. " " A typical term here is [ 5,"(i) 5,"(j)]
x[5, (i) 5, (j)] with a. x p. Near u»=0, each fac-
tor here scales as the energy density of an m, -
component substem, i.e., as $

" "~i' '~i, where
$ is the correlation length (the unperturbed Ham-
iltonian now has n independent identical m, -com-
ponent models). Thus, the crossover exponent
related to upped py] is found from the equation"

d —rp„/v = 2(1 —a. ,)/v

which yields p» =—a, . Note that we do not expand
the free energy in (X,), or use any other pertur-
bative procedure. Instead, we exactly identify the
operator appearing in K, as a scaling eigenopn a-
to~ near the appropriate fixed point, with the ei-
genvalue A. »-—n /v .' The only input is the
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knowledge that the energy density is such an ei-
genoperator. One thus expects the random my-
component system to have the usual nonrandom
behavior if +, 0, i.e., for XYor Heisenberg
systems at d=3. If a ) 0, as it is for m, =1 at
d=3, one finds a crossover to a new, "random"
behavior. This new behavior has only been stud-
ied to order e, where c = 4 —d, if m y

) 1,' ' and

to order e' ', if m, = 1." In both cases, the new

exponent n is negative.
If D, , =O, then X corresponds to isotropic m-

component behavior. The interaction X„with
the coefficients as given following (2), now has
terms like the product [m, '0, (~) 5,"(j)-m, '

(f) ~. (j)1[m, '&, '(f) &,'(j)-m, '&, '(f)
~ S,'( j)J. For n c p, each of these factors scales
as ( ' 9'~ '~', where y is the anisotropic ex-
change crossover exponent. ' ' Hence, the cross-
over exponent corresponding to b, ~ is" (2y
—dv ) =2@ + n —2, which is positive and of or-
der 0.35 for d =3, m =2, 3." We thus must con-
sider alternative fixed points.

A simple additional fixed point arises if Q»:0.
In this case, 3C«separates into two independent
parts, involving only the nm, -component vector
o, or the nm, -component vector o, The critical
behavior of each of these will be characterized
by the appropriate fixed point, which is the usual
"pure, " or "nonrandom" one if a &0 or the
"random" one if n 'I'""')0. In the latter case,
the "random" behavior also has a negative e
(and a negative u, , *). We now consider the sta-
bility of this "decoupled" behavior with respect
to the variable u». Again, u» multiplies an oper-
ator which is the product of two independent en-
ergy operators, one corresponding to an my com-
ponent system and the other corresponding to an

m, -component system. Thus, it scales as
leading to a "crossover"

exponent (y/v) equal to" (n /v + n /v )/2.
Since both exponents n, and n, are negative at
the stable fixed point, we conclude that the de-
coupled behavior is stable against the parameter
Q».

This kind of argument is easily generalized.
Any system with two competing order parame-
ters, with an energy-energy type of coupling,
will have a decoupled tetracritical point if the
specific heats of each order parameter separate-
ly does not diverge at T, .

To complete the identification of the tetracriti-
cal point with the "decoupled" fixed point, we
must study all other possible fixed points and all
possible Hamiltonian flows under renormalization-

group recursion relations. First, note that ini-
tially u„and u„are negative, while u» is non-
negative. If J,, were also random, then the signs
of R y y and u„would not change, but that of Qy2

may change. Thus, there certainly exist initial
distributions with u» =0, which are described by
the "decoupled" fixed point. Moreover, the flows
for small u» clearly go to this fixed point, as
argued above. This shows the relevance of the
results presented here to real systems.

More generally, one must now use the continu-
ous spin model near four dimensions. This intro-
duces three more variables, i.e., v», v», and

v» into 3C, [the scalar products, like (a, ~ v, )',
are replaced by Q„(S,~ S, )'].' We have studied
the recursion relations in the resulting six-di-
mensional parameter space. For v» &») 0,
these yield no fixed point in the physical region
(u», u»(0). For v» = 0, they yield 32 simple
fixed points, of the types discussed above. Of
these, only the "decoupled" one is stable. For
v» p 0, we thus far find numerically 22 (m, = m,
= I) or 23 (m, = I, m2=2) additional fixed points.
Of these, none of the physical ones is stable. "
We thus conclude that only the "decoupled" fixed
point is appropriate to describe the tetracritical
point.

The model discussed here, with only two pos-
sible directions of anisotropy, is distinct from
that discussed in Ref. 19, in which the local an-
isotropy can continuously point along any direc-
tion in space. In that model, no stable ferromag-
netic fixed point was found, and the transition
probably becomes of a spin-glass nature. " A
similar situation may sometimes occur when the
two components of the mixture have competing
ferromagnetic and antiferromagnetic ordering,
which on the average exactly cancel each other,
corresponding to 7,, = 0 in the above discussion.
In all other situations, the decoupled fixed point
seems to describe the critical behavior near the
tetracritical point, at least for a range of param-
eters in its vicinity. This may be the explanation
for the agreement of experiments on rare-earth
mixtures mentioned in Ref. 10, and those men-
tioned in Ref. 1, with Fig. 1.
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ERRATUM

INELASTIC COLLISION INDUCED BY INTENSE
OPTICAL RADIATION. D. B. Lidow, H. %. Fal-
cone, J. F. Young, and S. E. Harris [Phys. Rev.
Lett. 36, 462 (1976)].

Further investigations have indicated that the
results reported in this Letter do not demonstrate
a laser-induced inelastic collision. The experi-
ment was not able to distinguish between a Sr
4d'D- 5P'I' transition at 6408.5 A and the Sr-Ca
transfer predicted at 6408.6 A.

We have subsequently performed two new exper-

iments in Sr-Ca which do not have such a wave-
length coincidence [See S. E. Harris, R. W. Fal-
cone, W. R. Green, D. B. Lidow, J. C. White,
and J. F. Young, in Tunable I.asks and Applica-
tions, edited by A. Mooradian, T. Jaeger, and
P. Stokseth (Springer, New York, 1976), p. 193,
and H. %'. Falcone, %. R. Green, J. C. White,
J. F. Young, and S. E. Harris, ' Observation of
Laser Induced Inela, stic Collisions" (to be pub-
lished). j In both cases a laser-induced collision
was observed, and the transfer cross section
maximized at the expected interatomic wavelength.


