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A Bloch model Hamiltonian for an electron is an external electric field is solved exact-
ly. This enables a rigorous discussion of the Stark ladder, which has been a controver-
sial subject for some time. It is shown that the Stark ladder states are resonances. An
explicit expression for the resonance width is obtained.

There has been interest in a better understand-
ing of the properties of the Schrodinger equation
describing the motion of a particle in a solid per-
vaded by an external field. One problem Jere is
the following: Is there a Wannier-Stark ladder or
noV' '

The Wannier-Stark ladder is a periodic struc-
ture in the spectrum caused by bound electronic
states and is the electric field analog of Landau
levels. The picture associated with this quantiza-
tion is the following: The external field uniformly
accelerates the particle in k space. Since the
Brillouin zone is topologically a torus, the orblts
are closed (periodic), and the energies quantized.
It follows that the eigenfunctions are normalizable
and the par ticle is localized in space. Formally,
it has been shown that the Stark ladder states are
solutions of the Schrodinger equation in the one-
band approximation. '' Thus, in the absence of
tunneling, the Schrodinger Hamiltonian has bound
states. This, however, conflicts with the picture
that one has in x space. Bloch waves are extend-
ed all over space and it is difficult to see how an
external homogeneous field can confine the parti-
cle to (essentially) a finite region. On the contra-
ry, the electron is pushed to infinity. Moreover,
a theorem in the spectral theory of Schrodinger
operators guarantees the absolute continuity of
the spectrum and the absence of bound states. '
This means that the concept of the Wannier-Stark
ladder in the strict spectral sense is wrong.

More importantly, the Wannier-Stark ladder
has been an experimental problem. "' In princi-
ple, every measurement of the Franz-Keldysh ef-
fect is a measurement of the Wannier-Stark lad-
der. However, in pxactically all of these experi-
ments, no periodic structure has been observed
and only a few authors have reported seeing the
ladder. ' Since the interpretation of these few ex-
periments is still not unequivocal, the Wannier-
Stark ladder is not yet an established experiment-
al fact.

There has been a long-standing controversy on
the existence of the Stark ladder. From a theo-

retical viewpoint, the derivation of the ladder in-
volves uncontrolled approximations. ' (It is not
clear in what sense the one-band Hamiltonian ap-
proximates the Schrodinger Hamiltonian. ) The
ladder may therefore reflect the one-band ap-
proximation rather than the physics of the sys-
tem.

Several attempts have been made to settle the
problem. '" " However, there has been little
progress made in a rigorous treatment of the full
Schrodinger Hamiltonian. (I do not consider here
finite crystal model Hamiltonians where the dis-
tinction between bound and extended states is ob-
scured. o I felt that a concrete, solvable example
would considerable clarify the situation, and may
even be more convincing than general but abstract
spectral theorems. Such a solvable model is pre-
sented here.

In my model, the Wannier-Stark ladder turns
out to be a ladder of resonances. More precise-
ly, an analytic continuation of the Hamiltonian to
the nonphysical sheet has an infinite set of com-
plex eigenvalues in the form of a ladder lying pa-
rallel to the real energy axis. This is in agree-
ment with the infinite extension of the states be-
cause the Hamiltonian has no true eigenvalues.
On the other hand, this also agrees with the es-
sence of the Wannier-Stark ladder because reso-
nances (if they are sufficiently narrow) are indis-
tinguishable from true bound states. The Stark
ladder states are therefore not discrete, stable
eigenvalues but metastable states. This verifies
the conjecture made by Rauh and Wannier. "
feel that this model is an important step in the un-
derstanding of the Wannier-Stark ladder effect.

This model also helps to clarify the meaning of
"small external field. " In fact, since the external
field is a singular perturbation (which diverges at
infinity) it is not clear in what sense, if any at
all, a nonzero field xs small. "" It turns out
that the problem has tseo dimensionless parame-
ters f=(meEa'/v')'" and u =v'm/2eEK. E is the
external field, K= 2p/a the unit reciprocal-lattice
vector, and v the strength of the potential. Neith-
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er f nor u depends on the size of the crystal (in
the model the crystal is infinite). Thus, even
though the external field is a singular perturba-
tion, the meaning of small E is f«1 and u» 1,
Since E, , = 1.72 && 10'E,„, in most cases of practi-
cal interest, the external field is indeed weak in
the above sense.

A solvable model necessarily involves a special
choice of the crystal periodic potential V. This
choice must, however, be such that it has all the
elements of the Stark ladder problem. Let us
therefore isolate the two central features of the
problem: (a) The Bloch model Hamiltonian must
have energy gaps (clearly there is no Stark lad-
der for V=0). (b) The spectrum for E$0 must be
continuous from —~ to + ~, having no true eigen-
values. V will be chosen subject to these two con-
ditions.

A general periodic potential V commutes with
the lattice translation operator. In momentum
space this means

e*'v(p, p')e-""= v(p, p').

Hence, V(p, p') =0, unless p -p' is a reciprocal-
lattice vector. [ For local potentials, V(p, p')
= V(p -p'). ] Since a Stark ladder is associated
with each isolated band, an obvious simplification
is to choose V such that the Bloch Hamiltonian
has a single gap. An easy way to accomplish this
is by nonlocal potentials. The model potentials
that I shall consider is

R, (X) = —(i/e)e(-p)e(p')6(p -p') Imk &0,

e(p) = exp[-i (xp -p /6m)/e]. (5)

R, (a) has a cut along the a axis. Equation (5)
gives a natural analytic continuation of (4} to the
nonphysical sheet, which is obtained by using Eq.
(5) also for Imk &0.

Equation (4) has only the trivial solution, g
—= 0,

(in L') for Imk &0, because of self-adjointness.
As we shall see, Eq. (4) has nontrivial (L') solu-
tions for Im~ &0. These are resonances, and they
turn out to have a ladder structure. Moreover,
since ImA &0, there are no true bound states and
the spectrum of H, is absolutely continuous, as it
should be.

Let us introduce the notation (with terms match-
ing at corresponding positions}

4X-,-g+ kX- gp+ %XO,L+ 4Xg,

exponentially with the right time constant and
(b) the analytic continuation of the scattering am-
plitude has poles (Wigner-Weisskopf resonances)
at energies where the resolvent has its poles. "

In order to ana, lytically continue (3) to the non-
physical sheet, let us rewrite the eigenvalue
equation for the eigenvalue A so that

C(p) =R, (~)vq(p),

where R, (X) is the resolvent of —ex+p2/2~. '~

And we have

V(p, p') =v tb(p -p'+K}X.
,x(p')

+5(P -P'-K)X ..(p')],

~+ Q + Qp + Q~.

Equation (4) then reads
1

(6)

where y„(x) is the characteristic function of the
interval (a, b], i.e., y„(x) = 1, a &x & b and zero
elsewhere. V is manifestly periodic. The lowest
band of the corresponding Bloch Hamiltonian is
given (with q= K —

~ k~) by

k2+ k2 2 2 1/2

e(k}= — + v'
~
k ~& —, (2)

4 „(p) =0,

e(p)4' (p) =-—J e(p')4', (p'+K)dp',

e(p)4, (p) =e(0)4' (0)

——J e(p')4' (p'-K) dp',

(4 a}

(4'b)

(4'c)

for which the band gap is 2v.
In the presence of an external homogeneous

electric field of strength e = eE, the Hamiltonian
is

H, = —ex+p'/2m+ V.

I shall investigate the second-sheet structure of
H, . Resonances are poles of the resolvent on the
nonphysical sheet. "" True eigenvalues are real
poles. Note that (a) the time evolution associated
with the spectral projection on the poles decays

e(p)4 (p) =e(K)4,(K). (4'd)

i, , ( K
y, (p) = exp p'K -pK' Y+

~ p ——
4me 'I, 2

Equation (4'd) and the requirement of square-in-
tegrability imply 4pp) =0. If we let q, =e(p)g, (p),
the solution of Eq. (4') satisfying the appropriate
boundary conditions (details of the calculations
will be presented elsewhere) is then given by
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lr( ) I
= [1+1/(4f' )]"'[I+o(e)], (10)

and ~r(e) ~
&1, as it should (i.e. , ImA &0). Equa-

tion (9) describes resonances in the form of a
ladder which lies parallel to the real axis on the
nonphysical sheet. The width of the ladder states
is independent of n and is given by

r = (ae/2v) ln ~r(e) (.

The ratio of I to the level spacing becomes con-
stant as c -0. The spacing between the reson-
ances is ea. This is the Wannier-Stark ladder. '

The Stark ladder is observable provided 1
&& cQ' and

yu"'=2vm/K'»10 '. (12)

This is interpreted as a requirement of a mini-
mal gap (relative to the band width). Such a con-
dition was known to be important for the observa-
bility of the ladder. ' (The relatively small con-
stant, 10 ', however, is a new result. )

To conclude, let us consider how the above re-
sult transfers to the case of local periodic poten-
tials. In the absence of tunneling, the Stark lad-
der of the one-band Hamiltonian is embedded in
the spectrum of the other bands, It is not diffi-
cult to see that the latter is continuous, so the
interband interaction is a perturbation of embed-
ded eigenvalues" (i.e. , eigenvalues embedded in
a continuous spectrum). Contrary to isolated
eigenvalues which are stable in general (i.e. ,
stay on the real energy axis), embedded eigen-
values are unstable in general. A small perturba-

where

I', (x) =a,(I/f)a, (x) a,-(1/f )a,(x),

a,(x) =e '*"'F(iu~ —,'~ ix'),

a,(x}=e '""'xF(2+iu)2
~

ix'}.

The parameters f and u were defined in the intro-
duction; F(a~c )z) is the confluent hypergeometric
function; H, and Ho are the even and odd solution
of the complex harmonic oscillator. The eigen-
value equation follows from the continuity of the
wave function at p =0, i.e. , p (0) = p, (0). I et

2r(e)e "&'l=iu "'a (I/f)[J e '""'a (x)~]
Then, the eigenvalues of Eq. (4) are

A.„=ie/Kln~r{e) ~
+ e/E(9+ 2vn) + 5K'/48m, (9)

where ~ is an arbitrary integer. The spectrum
of eigenvalues therefore has the form of a ladder.
An asymptotic estimate of r{e) gives"

tion gives purely continuous spectrum by shifting
the eigenvalues to the nonphysical sheet. " Thus,
the interband interaction makes the Stark ladder
states resonances. Hence, the qualitative fea-
tures of the model presented above transfer also
to local potentials. On the other hand, it is more
difficult to speculate on the functional form of
r(e). I' is clearly model-dependent. In particu-
lar, since my model has bad analytic properties
(due to the characteristic function in V) it gives
no indication on r(e) for local potentials. A na-
tural conjecture following from the Fermi golden
rule is that r(e) is exponentially small as e-0.""Whether this conjecture can be made
into a theorem still remains to be seen.

I am most indebted to Professor Zak who sug-
gested this problem, for many fruitful discus-
sions, persistence, and help. I also thank Pro-
fessors R. Peierls for useful correspondence,
I,. Schulman for his interest, A. Grossman and
S. Goshen for their encouragement.
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