
VOLUME $7, NUMBKR 25 PHYSICAL RKVIK%' LKTTKRS 6 DZCFMBKR 1976

species, in the case of the minor species. Thus,
theory predicts resonance frequencies very close
to the single-particle ion cyclotron frequencies
and this is verified experimentally.
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We report the first precise study of atomic mobility through a second-order phase
transition. Simultaneous measurement of the ionic conductivity o and the specific heat
near the 208-K transition of RbAg4I5 establishes an accurate proportionality between lno.

and the ordering enthalpy h. This is interpreted using a many-body theory which treats
local order beyond the mean-field approximation and in which the constant of proportion-
ality is determined by microscopic details of the interaction among the mobile defects.

The mobile interstitials in some solids can dif-
fuse with relative freedom among partially occu-
pied sites connected by jump paths. In certain
cases, the interactions among these mobile ions
cause them to adopt partially ordered structures
as the temperature is lowered. '~' Most treat-
ments of the effect of ordering on the ionic mo-
bility employ mean-field models which ignore im-
portant critical-point effects, and therefore pre-
dict that the activation energy should be unaffect-
ed by the phase transition above T, and should fol-
low the square of the long-range order parameter
below. ' An exception'to this approach is Mahan's
attempt4 to treat a lattice-gas model rigorously.
However, no accurate prediction for the ionic mo-
bility near the phase transition was obtained. In
this Letter we present the first experimental de-
termination of atomic mobility near a phase tran-
sition sufficiently accurate"' to examine the crit-
ical behavior, and the first theoretical analysis
to go beyond the mean-field approximation. "'
We establish, both experimentally and theoreti-
cally, that an accurate proportionality exists be-
tween the logarithm of the ionic conductivity,

lna, and the interaction enthalpy, A, , of the mo-
bile-ion subsystem. This demonstrates the dom-
inance of short-range order effects which have
generally been ignored, and, through the con-
stant of proportionality, gives microscopic infor-
mation about the way short-range order modifies
the energetics of the diffusive jurnp. The solid
electrolyte RbAg, I, has been employed because
its conductivity provides a simple measure of mo-
bility and because its 208-K phase transition has
been shown to be Ising-like.

The specific heat and the derivative dR/dT of
the resistivity of RbAg, I, single crystals were
measured simultaneously as functions of temper-
ature using the ac method. ' Crystals were grown
in our laboratories using the solution technique
with high-purity reagents. " Small single crys-
tals were chosen as representative specimens
for crystallographic identification. Buerger pre-
cession patterns showed quite uniform alignment
and a, cubic unit cell with a lattice constant of
11.24 A, in good agreement with previous deter-
minations. " Chemical analysis yielded a Ag-Rb
atomic ratio of 4.2+ 0.2.
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Crystal slices were thinned to 0.1 mm using
dry abrasives and connected to silver wires for
four-terminal resistance measurements. 50-
pm silver wires, coated with Ag paint, were
heated in contact with the sample by passage of
an electrical current. The diffused contacts pro-
duced in this way gave the smallest observed con-
tact resistance. A constant ac current (12 pA at
10 kHz) was passed through the samples while
they were heated by light chopped at 1.5 Hz. This
induced temperature oscillations, inversely pro-
portional to the specific heat, which were moni-
tored using a 25-pm type-K thermocouple. The
resulting amplitude modulation of the ac voltage
was demodulated from the carrier and detected.
From the temperature and voltage oscillations
the specific heat C~ and dR/dT were obtained si-
multaneously as the temperature was varied slow-
ing through the region of the phase transition.

Figure 1 shows the resistance R (T) obtained by
integrating dR/dT through the critical region.
For each sample, values obtained in this way
agree with dc determinations of R obtained at sev-
eral temperatures. From dR/dT and R(T) we can
calculate the logarithmic derivative d(inc)/dT
shown in Fig. 2. This quantity exhibits critical
behavior similar to that of the specific heat,
which is also shown in Fig. 2.'

If the conductivity of RbAg, I, is assumed to
take the Arrhenius form

o = (A/k, T ) exp[- U(T)/k, T],
with A determined at high temperature and all
temperature dependence associated with U/k 8 T,
the data of Figs. 1 and 2 yield U = 0.12 eV for 213
K» T» 300 K and U = 0.17 eV for 1SO K» T» 205
K. These values are in good agreement with pre-
vious determinations from the dc conductivity. "
In what follows we explain the observed size and
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FIG. l. Arrhenius plot of the sample resistance near
209 K as obtained by numerical integration of the dR//dT

measurements.
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FIG. 2. Temperature derivative of lno vs tempera-
ture for RbAg4I&, with the molar heat capacity shown
for' comparison.

temperature dependence of the change in V in the
critical regions.

To discuss these properties we propose a clas-
sical many-body theory whose validity extends
beyond the area of solid electrolytes. The theory
treats diffusive transport by mobile ions hopping
among the interstices of an embedding lattice,
and includes the effects of interactions among the
diffusing ions. The conductivity changes accom-
panying ordering in RbAg, I, exemplify processes
in which interaction among mobile defects affect
their mobility. In the interest of brevity, the
treatment that follows is particularly adapted to
this specific problem. A more complete account
will be published elsewhere. "

For a particular distx'ibution of the interstitials
among the available sites in real space, the rep-
resentative point of the system lies within a
small volume y of configuration space. '4 A diffu-
sion jump causes this point to pass thxough the
surface separating y from a neighboring volume
y' associated with the new distribution. A system
initially prepared within y makes transitions from
y to y' at a thermal mean rate given exactly" by

u) „,=(2nu, T/n)(G„. -Gyj, (2)

in which we employ the notation JG j=—exp(- G/
kB T). In Eq. (2), (G&j is an integral of the dis-
tribution function p over the volume y, and (G

& j
is the unit distance multiplied by the integral of p
over the boundary separating y and y'. The total
rate W at which jumps occur in the entire system
is obtained by multiplying myyl by the probability
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(G )~' (G J that y be occupied, and summing
over all (distinguishable) configurations, to find

W =(2 k T/h)Q' LG pQ'(G
yy' y

in which the prime on the summation marks the
physical requirement of distinguishability.

The classical distribution function p, from
which Q

y
Rnd 6 yyl Rl e del lved, contRins the

many-body potential of interaction V(s) among
all host and interstitial atoms, with s the vector
of mass-weighted coordinates locating all atoms.
We write V(s) = V'(s) + V'(s) in which V'(s) de-
scribes the lattice energy for uniform occupancy
of the interstitial sites and V'(s) contains the re-
maining interactions among interstitials. To cal-
culate Gz when V' is neglected, we expand V (s)
to second order in a Taylor series around its
minimum value V„' at s . The resulting value, "
which we call G o, is just V„' plus terms involv-

ing the frequencies of the normal modes that di-
agonalize V'(s) near sz. We now switch on the in-
teraction potential V' and, assuming that it var-
ies smoothly with s, include only the first two

terms of its Taylor expansion around s . The
important point of this linear approximation is
that the mode frequencies do not change. It fol-
lows that the interactions influence 5

y
only to the

extent of an additive potential V„' [= V'(sz)].
Analogous arguments show that Q .', also, is
merely augmented by an additive potential V„
at the saddle point. The crystal problem is thus
transformed into a combinatorial problem of site
occupancy.

For simplicity, we specialize to a case in which
all sites and saddle points of V' are equivalent,
with G„~o -6 '=g independent of the cell y. Then

W = (2wk~T/6)

Ol"

W = (2~k, T/a) vg) {(V„,*) -(V, ') I, (5)

with (. . .) representing the thermal average. In

Eq. (5), v is the mean number of saddle points
(yy') available to the individual configurations y.

To evaluate Eq. (5) we still require detailed in-
formation about the interactions among intersti-
tials. We postulate that, for accessible saddle
points, neither site terminating the jump path is
occupied by a second interstitial; otherwise, the

is blocked, with V„'— . Then, for
RbAg4I„with approximately tetrahedral coor di-
nation of N sites containing 2N/7 ions, we find v

= 2N to second order in the inhomogeneities of
the distribution among sites. " Further, for a
potential function V derived from pairwise in-
teractions among the interstitials, (V ) is just
2h, with h the enthalpy of interaction per inter-
stitial. Finally, we know little about the interac-
tion potential V „~' at the saddle point. However,
of necessity, an ion at the saddle point samples
the short-range order of both an occupied site
from which it originated and an empty site to
which it may hop. Since it therefore couples less
strongly to the local order, we write (V i')
= p(vz') (anticipating that

~ p~ «1 and is almost in-
dependent of the precise local order) to obtain,
finally, for the rate at which each interstitial
jumps,

W = (4wk~ T/8) exp( —tg —2(1 —p)k]/kBT). (6)

The Nernst-Einstein equation" then leads direct-
ly to the conductivity, from which we obtain, ne-
glecting any possible dependence of the correla-
tion factor on short range order,

d(lnv)/dT =2(1 —p)c~/k, T,+B (T~T, ), (7)

with c~ = (Bk/BT)~ the heat capacity per particle of
the mobile-ion subsystem, and B containing all
nonsingular contributions. We emphasize that
Eq. (7) includes an accurate description of local
order, and avoids mean-field-type approxima-
tion entirely. "

HRV lng simultaneous ly measured th e spec lf lc
heat and conductivity in the vicinity of T, we are
now in a position to examine their relative criti-
cal behavior without reference to fitting func-
tions, exponents, or even a choice of T,. In ac-
cordance with Eq. (7), the experimental values
of d(inc)/dT are plotted in Fig. 3 as a function of
the molar specific heat C~ with the temperature
as an implicit variable. The curves cover three
decades of reduced temperature above and below
the peak. No attempt has been made to subtract
the temperature-dependent portion of the lattice
heat capacity, and this undoubtedly causes some
deviations of the curve from linearity far from
the peak (at small values of C~). The solid line
fitted to the data above and below T, gives

d (Inc)/dT = (0.6105/RT, )(C~ —24.09R).

It is evident from these results that experiment
and theory are in good agreement and that the
conductivity anomaly does indeed arise from
changes in the ordering enthalpy at the transition.
If all sites took part equally in the diffusion, C~
should be apportioned equally among all four Ag
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tions is an old one, a precise experimental and
theoretical description of the mobility change in-
duced by the ordering transformation has previ-
ously been lacking. "We expect that behavior
similar to that described here can be observed
for metallic hydrides and for ordering near other
solid-state transitions. ~' In a larger view the
present work establishes unambiguously that the
critical behavior of the mobility is but one mani-
festation of a more general result, Eq. (7), con-
necting mobility and the interaction potential in
dense systems of interacting mobile defects.

c, /RT, f Klj

FIG. B. Temperature derivative of lna vs the molar
heat capacity. Temperature is an implicit variable.
Marks show decades of the reduced temperature t =T/
T —1 and t' =1—TjT,. Triangles, T& T; circles, T

ions per formula unit, so that c~/h~ =C~/4R. If,
on the other hand, the transport occurred only
through those sites that order, involving a frac-
tion —', of the mobile ions, ' then c~/hB =2C~/3R.
These two assumptions yield, respectively,

2(l —u) = 2.44; p. = —0.22 (all ions),

2(l —u) =0.92; p, =0.54 (-', of ions).

Mobility processes in the real crystal are com-
plicated but fall in betmeen the stated extremes:
The ordering sites are at least involved in every
diffusive jump. It is therefore most satisfying
that the two values of gaverage close to zero.
Apparently, the saddle points are, as expected,
mell isolated from the short-range order in the
lattice. Changes in conductivity then occur be-
cause increasing local order deepens the poten-
tial well in which each ion sits, thereby increas-
ing the activation energy as the system orders.
We note that some error is introduced into Eq.
(7) by our present neglect of any residual depen-
dences of the diffusion correlation factor and the
atomic frequencies on the precise degree of local
order. " Homever, these effects are apparently
quite negligible since data from above and below
the transition superpose accurately (cf. Fig. 3).

It may be remarked in summary that, although
the problem of ordering in interstitial solid solu-
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