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We present the first calculations of differential cross sections for elastic proton-deu-
teron scattering using a three-body formalism which correctly takes into account the
Coulomb repulsion between the two protons.

The neutron-deuteron problem represents the
most thoroughly investigated example in three-
body scattering theory. Proton-deuteron colli-
sions, on the other hand, have not yet received
the attention that they deserve in view of the
many precise experimental data available. The
reason for this has been the lack of any practical
theory which correctly deals with the difficulties
arising from the long-range nature of the Cou-
loumb repulsion between the two protons.’

Up to now, essentially two proposals exist for
modifying three-body integral equations so as to
allow for the incorporation of Coulomb forces in
addition to short-range interactions. One is
based on including the Coulomb potentials into
the unperturbed part of the Hamiltonian, thereby
formally separating the short-range and the long-
range portions of the interaction.?* In order to
make this scheme manageable, approximations
have been made by Adya® the reliability of which
is difficult to assess. In the other attempt,® the
Coulomb potentials are screened, and that part
of the three-body kernel which becomes most
singular in the limit of zero screening is inverted
explicitly so that the resulting modified equations
are well-behaved. However, they are useful only
for energies below the break-up threshold.

Recently® we have proposed another approach
for investigating elastic proton-deuteron scatter-
ing which neither has recourse to uncontrollable
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approximations nor has a restricted range of ap-
plication. It is the purpose of this Letter to sub-
stantiate both assertions by discussing first nu-
merical results for scattering cross sections.

Our method is based on the quasiparticle ap-
proach of Alt, Grassberger, and Sandhas.’”
There, by splitting the two-body transition oper-
ators T7 occurring in the three-body kernel into
a separable part 7 ° and a remainder T,", equa-
tions could be derived for effective two-body am-
plitudes T, ,, which directly describe the scat-
tering of an elementary particle off a two-body
bound state. The effective potentials V4, , 0oc-
curring in these equations depend only on the re-
mainder T,’, and can, under suitable circum-
stances, be evaluated perturbatively.

Application of this idea to the present problem
is made particularly simple and transparent if
the strong forces between the nucleons are cho-
sen to be purely separable, so that v, =3 Ix 77)
XXy, {Xy,|. (This restriction is not essential but
only a matter of computational convenience.)
Then the two-body transition operators are also
separable except the one of the pp subsystem
which, according to the two-potential formula,
contains the pure Coulomb amplitude 7', as non-
separable part [i.e., T, =0 for y #(p,p) and T,,’
=T,]. Under these circumstances Vg, om re-
duces to the simple and exact form (see Ref. 7,
Sec. 5)

(1)

The first term in Eq. (1) describes the scattering by the
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FIG. 1. Graphical representation of the effective potential for pd scattering, Eq. (1).

strong potentials alone, relevant for nd reactions. The other terms represent the full contribution of
the Coulomb repulsion between the two protons. Equation (1) is displayed graphically in Fig. 1. After
symmetrization, the Lippmann-Schwinger—type equations for the effective two-body transition opera-
tors assume the form

Tnmzvnm+2'rvan0.r Trm' (2)

Here v, is the symmetrized version of expression (1), and G,_, is the effective free Green’s function.
The indices %, m, and » characterize the various possible two-particle channels |d for np (3S,), s for np
(*S,), and s for pp (*S,)]. However, Eq. (2) is not yet suited for the investigation of pd scattering since
its kernel is not of the Fredholm type. Indeed, no difficulties arise from diagrams (a)-(c) of Fig. 1,
whereas diagram d contains a part the singularity structure of which is the same as in the genuine two-
particle Coulomb case. Realization of this fact enables us to apply the methods developed for the latter
problem® to our effective two-body equation (2).

Let us briefly outline this approach. We start by assuming the Coulomb potential to be exponentially
screened, so that V_(r)—= V,,(r) =€’ exp(- ur)/r. Consequently the corresponding amplitude T,’, and
hence the effective two-body quantities T, v, and G,, also depend on u, and will therefore be labeled
by . The difficulties with Eq. (2) mentioned previously can then be paraphrased by saying that its
solution T!*) has no limit as u—~ 0. According to the above discussion the kernel of Eq. (2) is decom-
posed into a “dangerous” part originating from graph d, and another part V“"Go““ which poses no
problems, in the limit of zero screening,®

(V(MGOW))M@", q) zbnméndK(y)(a') q)+ (‘7(“)00(“)),,,,.(51.', a), 3)
with
K@, d)=(?/2e){[@ -a)*+ 2 [(3/4M)(q, % +ic = g*)]} "*. 4)

Here, M denotes the nucleon mass, and g, the on-shell momentum in the pd center-of-mass system.
After introducing the splitting (3) in Eq. (2), the “dangerous” portion of VG,T is shifted to the left and
the resulting factor multiplying T is explicitly inverted; thereby, we end up with an equation of famil-
iar structure for 7",

Tom W@ @) =000 g Ty @5 D+ T, @', ). (5)
The quantity 7, is defined by
Ty =V Ky Ty =V + TnKp (6)

which is a genuine twe -body equation describing the scattering of a particle of mass M off another par-
ticle of mass 2M via a screened Coulomb potential V,,,. The Coulomb-modified strong amplitude
T, ‘*) fulfills the equation

(B — (BT (W) (1) (W Ty (1) §) (5]
T _Qn vnm Qm +E1'Qn vnr GO.r 0T H . (7)

Sc, nm sc,rm

Here we have introduced a quantity ,*’ with components Q,*’ =Q‘*)| and Q_*’ =1 for m #d. The
operator Q‘*’(q,? +i€), and its transpose Q¥ 7(q, 2 +i€)=0'* (g, ~i€) are the two-body Mdller opera-
tors for the screened potential V,,. In fact, Q*’(¢,%+i€) maps the plane wave state |q) into the scat-
tering state |q,,,")=Q*|q), for |q|=g,.

Thus Eq. (5) represents a decomposition of the full amplitude T*’ into a genuine two-particle Cou-
lomb amplitude 7,,, and an effective two-body amplitude T, ‘") in which the long-range distortion
shows up through the two-particle Mdller operators Q‘*’, This allows us to take over directly the re-

1538



VoLUME 37, NUMBER 23

PHYSICAL REVIEW LETTERS

6 DECEMBER 1976

sult of Ref. 8, which implies that for on-shell val-
ues of the momenta (|q’|=|q|=g,), the renormal-
ized amplitudes Z,”'T ,,(q’,q) and Z,"'T,_ ,,'*’@’,
q), and consequently also Z,”'T,,‘*(q’, q), remain
finite when u goes to zero. After performing this
limit the last expression, therefore, represents
the correct amplitude describing pd scattering
with unscreened Coulomb potentials. Note that

Z, is the well-known renormalization factor.

Z , =exp{-2in[In(2q,/p) -C|},

with n=1/(Rq,), R being the Bohr radius of the
pd system, and C=0.5772 ..., the Euler number,

In order to demonstrate that this approach is
also practical, we present the first results of a
numerical investigation of elastic pd scattering.
To simplify the numerical work we have approxi-
mated in V(¥) and in G,(*) the screened two-body
Coulomb amplitudes T(,,,’ by their Born terms
V(uyy- This should be reasonable for the case of
like-charged particles.

Allowing for charge dependence, our separable
potentials have been chosen to be of the Yama-
guchi type, with parameters fitted to the low-
energy data for 'S, proton-proton scattering (to-
gether with V), and for neutron-proton scatter-
ing in the 'S, and the °S, channels. Under the as-
sumption of charge symmetry of the nuclear forc-
es and by switching off the Coulomb interaction,
these potentials provide at the same time a
charge-dependent description of neutron-deuteron
scattering.

For the numerical calculations we use the
screened version of Eq. (2) for T(¥). After par-
tial-wave decomposition we obtain from it the
total (i.e., screened Coulomb plus Coulomb-mod-
ified nuclear) pd phase shifts 6,(*). Simultane-
ously we calculate from Eq. (6) for T, the
screened Coulomb phase shifts o,(*). Roth 6,(*)
and 0,(*) depend on the cut-off parameter u and
diverge when u—0. However, for the difference
between the two which is just the desired Cou-
lomb-modified nuclear phase shift, the zero-
screening limit can be proved to exist by means
of arguments analogous to those of Ref. 8. Our
calculated values showed that within our numeri-
cal accuracy this limit is reached already for p~
2 30 fm at the energies considered up to now.
Thus, the construction of a reliable Coulomb-
modified strong amplitude for unscreened Cou-
lomb potentials is made possible. Adding to it
the analytically known pure Coulomb contribution
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FIG. 2. Differential cross section for pd scattering
at 2-MeV (left-hand scale) and 10-MeV (right-hand
scale) incident proton energy. Solid line: full theory;
dashed line: neglect of Coulomb modifications of the
strong amplitude; circles: experimental results of
Ref. 9.

yields the final pd scattering amplitude. For fur-
ther details we refer to Ref. 6.

In Fig. 2 we compare calculated pd cross sec-
tions at 2- and 10-MeV laboratory energy of the
incident proton with experimental data from
Kocher and Clegg.® The agreement is generally
good, except in the Coulomb interference region
and in the backward direction, where the theoret-
ical curves are lower than the experimental ones,
with the discrepancy increasing with increasing
energy. This is not surprising since we already
know from elastic nd scattering that the cross
sections become too low in the forward and back-
ward directions if the nucleon-nucleon potentials
employed are too attractive. But there, by using
less attractive (i.e., more realistic) potentials,
good agreement with experiment can be achieved
(see e.g., Alt and Bakker' and Ziegelmann'?),
The same remedy is also expected to work in the
case of pd scattering.

In the framework of integral equations, the only
theoretical method to describe pd cross sections
has been, up to now, calculation of the corre-
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sponding nd amplitudes and coherent addition of
the pure Coulomb amplitude.'! This amounts to
neglecting the Coulomb modifications of the strong
nd amplitudes which, in the present formalism,
means neglect of all shorter-range Coulomb ef-
fects in V™ and G ). However, we are now in
the position to check the reliability of such a pro-
cedure. For this purpose we have included in
Fig. 2 the cross sections obtained in such a way.
It appears that at low energies this approximate
treatment is rather unsatisfactory, whereas it
may become more reliable at higher energies.

In conclusion we emphasize once more that our
approach to the Coulomb corrections in pd scat-
tering is not only mathematically correct but also
well suited for practical applications with no need
for drastic approximations. (This is in contrast
to the use of the formalism of Ref. 2 made in Ref.
4. Indeed, the results obtained there bear only a
faint resemblance to ours or to the experimental
data.) Apart from employing separable nuclear
potentials, only one approximation has been made
in the present calculations. Namely, the effective
potentials and Green’s functions which determine,
via Eq. (7), the Coulomb-modified strong ampli-
tude T sc(“), are evaluated to lowest order in e® on-
ly. However, the neglect of higher-order terms
can and will be checked. Furthermore, the diffi-
cult question which is bound to plague most other
approaches of how many partial waves in the pp
subsystem should be taken into account never does
arise in our method where, characteristically,

the full three-dimensional Coulomb potential is
built in.

One of us (H. Ziegelmann) acknowledges an in-
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with Professor E. W. Schmid.
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Generation of Coherent Radiation at 53.2 nm by Fifth-Harmonic Conversion*
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The generation of coherent radiation of 53.2 nm by fifth-harmonic conversion of laser
pulses at 266.1 nm in both Ne and He is reported.

Frequency upconversion using third-harmonic
generation and four-wave mixing has received
attention in recent years for the generation of co-
herent radiation in the vacuum ultraviolet (VUV)
region of the spectrum.!”® Such processes have
been used to produce coherent radiation at wave-
lengths as short as 57.0 nm.* The generation of
coherent light in the extreme ultraviolet region
by third-order processes becomes increasingly
difficult because of the scarcity of intense coher-
ent sources at the required pumping wavelengths.
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The development of frequency conversion tech-
niques utilizing higher-order nonlinearities of-
fers an attractive alternative to this approach,
since it would allow larger steps along the fre-
quency scale to be made in a single conversion
process.

Several of these processes have been suggested
in the literature.>® Although reasonable conver-
sion efficiencies have been predicted for some of
these interactions, the only published experimen-
tal evidence of such processes has been the fifth-



