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Evolution of a Quantum System: Lifetime of a Determinant*
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A measure of the "dependency" of a many-particle system is defined and its time de-
pendence is evaluated for systems initially described by a single Slater determinant. An
uncertainty product between the energy spread of the initial determi~~~t and the lifetime
of a system's independence is established. Numerical estimates of some lifetimes are
given. They are not so long as to be reassuring for nuclear time-dependent Hartree-
Fock calculations. Each separate case ought to be checked.

In the analysis of nucleon heavy-ion processes
by means of time-dependent Hartree-Pock (TDHF)
numerical models, ' the wave function of the sys-
tem is assumed initially to be well described by a
single determinant, and is evolved subsequently
in time under the specific assumption that the
wave function remains a determinant. On the
other hand, even assuming that the description of
the system wave function initially (i.e. , at t = t,)
as a single Slater determinant p, were exact, ' the
system in fact evolves forward in time, not as
dictated by the Hartree-Fock approximate Hamil-
tonian, X, but according to the true, exact
Hamiltonian of the system, H ".

Structurally these two Hamiltonians differ in
that the Hartree-Fock Hamiltonian involves only
single-nucleon potentials (obtained, at the ex-
pense of the linearity of the Hamiltonian, by av-
eraging over the wave functions of the nucleons
in the system}, whereas the true Hamiltonian is
generally assumed to involve two-nucleon inter-
actions. This difference in structure guarantees
a very specific difference in the time evolutions
of the two descriptions: The true evolution will,

as time progresses, introduce into the wave func-
tion particle-particle correlations not describable
within a single determinant, whereas the approxi-
mate Hartree-Pock one-particle Hamiltonian, by
construction, generates at each instant a new sin-
gle determinant from the old one.

A many-particle wave function, ((t), can be
written as a single determinant, if and only if the
1Tlatrix

is identically zero, where p s(t) is the single-
particle density matrix defined by

p (i) = &|t(t) I
'

I y(t)&.

%e define the "dependency, "per particle, of any
wave function by the number'

By virtue of the Hermiticity of p (which allows p
to be diagonalized into a real matrix) and the
Fermi statistics of the problem (which guaran-
tees that every diagonal element of p lies in the
range 0 p ~ I, and therefore that every diag-
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onal element, D, is non-negative), the number
D can vanish only when the operator S vanishes.
Thus zero dependency, D=O, also implies that
the wave function can be expressed as a single
Slater determinant. A finite nonzero value of the
dependency, D, on the other hand, guarantees
that the wave function cannot be expressed as a
single determinant.

Thus the finite value of D for the exact solution
will deviate in time from the zero value which
characterizes the approximate, single-determi-
nant, Hartree-Fock solution. Its time depend-
ence therefore allows a natural measure of the
time over which one can expect the TDHF approx-
imation to provide a good approximation to the
exact dynamical evolution.

To estimate the time over which the Hartree-
Fock evolution may reasonably be expected to ap-
ply, we study the growth in time of the dependen-
cy, D(t -to), in (3) as given by the Taylor expan-
sion:

D(t-t, ) =D(t,) +(t t,)D"(t,-)

thereby that

1 - Il~
K I ~pv, orl

$41)IE E
(9)

where the set E is the set of single-particle
states filled in the determinant g(t, ), and v„„~,
is the difference between the direct and exchange
matrix elements of the two-nucleon interaction of
the exact Hamiltonian.

An energy eigenstate of the true Hamiltonian is,
of course, stationary in time. Indeed, a meas-
ure of the time for the growth of the dependency,
D, of a wave function, such as T~ in Eq. (9),
might reasonably be expected, by virtue of the
general complementarity of energy uncertainty
and lifetime, to be closely related to the energy
spread of the system described by y(to). To see
that this is indeed the case we have computed the
energy spread (per particle), ' as follows:

+(2!) '(t-t )'D"(t )+. . . (4) —~&/(t )0IHI $(to)), (10)
By hypothesis D(to) =0: g(t, ) is assumed to be a
determinant. In addition, one finds by direct cal-
culation that

Dt'&(t, ) = 0,

whenever g(t, ) can be written as a single deter-
minant [D(t,) =0]. This result follows from the
evaluation of

D(n)(t )

The second term in Eq. (11) is positive semidefi-
nite, and vanishes only when g(t, ) is an eigenfunc-
tion of JC(to). (This might occur for stationary-
state or freely translating Hartree-Fock solu-
tions, but not for nontrivial TDHF solutions, ex-
cept perhaps at some specific point in time. )
Thus from (11) and (9), one can write the comple-
mentarity product,

for n = 1, by means of ~OT~ ~ tf/2, (12)

dy(t) Idt = iH d(t), -

D(t-t, ) = ,'(t-t, )'D' (t,)+.-. .
=[(t-t,)IT ]'.

(8a)

(8b)

The quantity T~ defined here measures the "de-
pendency lifetime" during which a substantial de-
viation from a pure independent-particle deter-
minant grows into the wave function. It is calcu-
lated by means of (6) for n =2 and double commu-
tators of the Hamiltonian with a~ a . One finds

and evaluation of commutators of the form [H
aa a„]. Thus the early-time behavior of D is giv-
en by

relating the energy spread of the initial determi-
nant with its lifetime for decay into nondetermi-
nantal forms. We emphasize that the initial time
tp may be arbitrarily chosen at any point along the
path of a TDHF evolving determinant.

Precise estimation of T~ by means of Eq. (9),
or Eqs. (10) and (12), even for the simplest case
of a single isolated nucleus, requires calculation
of the stationary-state Hartree-Fock solutions
for the Hamiltonian in question. Fortunately,
some published Hartree-Fock calculations of nu-
clear ground states' report values for the quantity
(10) and so a.liow immediate inference of the quan-
tity T~. Table I summarizes some examples of
this kind.
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TAggE l. Values of (~0) Eq. (10), from Ref. 5,
and the corresponding estimated dependency times, Tp,
from Eqs. (9) and (12) for isolated single nuclei of the
type noted. Since these times are probable upper
bounds on 7D values which are expected to apply to nu-
clei to collision (see text), and since they are compar-
able to (and surely not much greater than) the times
for nuclear heavy-ion collisions, they support a cau-
tious view of TDHF numerical models for such colli-

sionss,

Nucleus
(aZ, ) 2

(MeV )

Tp =/2 (GEO)

(10 sec)

"Ne
24M

28$i
32$

36~

0.54
0.71
0.70
0.56
0.25

4.4
3.9
3.9
4.4
6.6

We note that the alteration of the initial Har-
tree-Fock determinant by the replacement

y (r,)- exp(ik ~ r,.)y„(r,), (13)

has no effect whatsoever upon the calculated val-
ue of v~. This results from the fact that vD (and
bE0 as well) involves only the translationally in-
variant operations of the exact Hamiltonian, H~

Because of the same invariance, the determinant
formed from the Hartree-Fock eigenstate by the
replacement (13) evolves under TDHF dynamics
as a pure translation of the eigenstate

A

tt(t, ) =Qg q, (r, ),
4=1

(14)

with velocity v = Bk(m, and without alteration of
its intrinsic structure.

The center of interest for TDHF computer mod-
eling is, of course, the collision of two nuclear
heavy ions. Therefore, the values of 7D for that
problem are of special interest. Unfortunately,
no one who has so far calculated a TDHF numer-
ical model of nuclear heavy-ion collisions has
evaluated (bE,)', expression (10), by which we
were able via already published stationary-state
Hartree-Fock results' to obtain the quantitative
estimates of 7~ for an isolated nucleus given in
Table I. [Indeed, one goal of the present report
is to encourage practioners to include (bE,)' in
their reported results. ] Therefore we are only
able at present to offer arguments toward the fol-
lowing qualitative conclusions: (a) During the
early stage of a collision, the va, lues of YD will
be of the same order of magnitude as those in Ta-
ble I, and (b) the general qualitative tendency in

later stages of the collisions will be for the de-
pendency lifetime, ~~, to grow shorter, the more
energetic the process. In advancing this argu-
ment we consider for simplicity only collisions
involving two identical nuclei.

For well-separated nuclei, we write the sum
in (9) as three subsums,

z =A ' g ~v„. ..~'=zaR+z" +zt R

pvcP
OT+P

(15)

by inspection of the corresponding matrix ele-
ments. Also, if the two nuclei are separated by
more than the range of the nucleon-nucleon force,
every matrix element in Z~ vanishes identically
because of vanishing overlap of the factors in the
integrand. Thus Z "R =—0. Furthermore, when the
nuclei begin to approach within the force range,
the term-by-term corr espondence guarantees
that

g LR gpRR (18)

where g is a (small) geometric factor describing
the average reduction of the squared matrix ele-
ment which results from the (now small) spatial
overlap of the folded two-body potential of one
nucleus with the density of the other. Thus one
concludes (even were g to be as large as 1) that
in the very early stages of the collision process
the magnitude of Z (and thus of vD) in (9) is, with-
in a factor of 2 or so, the same for colliding ions
as for isolated ions. Thus Table I is relevant al-
so to nuclear collision processes.

To support the conclusion that the times in Ta-
ble I are also relevant to nuclear heavy-ion col-
lisions, in that they provide an upper bound for
the dependency lif etimes Of such processes, we

in which subsums the filled states (tLv) are both
localized in the right nucleus (RR), both in the
left (LL), or one from each (LR). Then, so long
as the nuclear volumes have zero spatial overlap,
the terms in each of these three sums are in ex-
act one-to-one correspondence which can be la-
beled by the following correspondence among the
Fourier components of the single-nucleon wave
functions for either nucleus at rest, for the left
nucleus translating to the right with momentum
+5K per particle, or for the right nucleus trans-
lating toward the left with momentum —SK per
particle:

k k ~=k +K k =k —K.a n n n

Then one obtains immediately the result

ERR gLL

1523
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emphasize that the Pauli exclusion principle is
the source of a strong tendency to keep the value
of vn in (9) small, and that that tendency is weak-
ened mith increasing initial kinetic energy. Thus,
more energetic processes promise generally
smaller dependency times, vD. In particular,
although the number of filled states, and there-
fore of pairs (pv), is fixed by the nucleon num-
ber A(N, Z), the number of possible final-state
pairs (vv) is reduced by the exclusion principle,
as compared mith the number mhich mould other-
mise be consistent mith the fundamental limita-
tions (e.g. , momentum conservation and momen-
tum transfer) of the same two-nucleon interac-
tion. Thus, as the initial energy of the tmo col-
liding ions increases, this "Pauli" reduction fac-
tor, ' describing the ratio of the number of al-
lomed final states to the maximum possible num-

ber of final state, approaches unity, and the sum
in (9) approaches its "Boltzmann limit"

in mhieh the sum over the unfilled states is re-
placed by an unrestricted sum over alE states.
The dependency time, correspondingly, approach-
es the "Boltzmann" time

7'~ 7'g =2hZ~ lI2

mhieh is almays less than 7~.' Thus, one expects
in general' that increased reaction energy mill in-
volve dependency times even shorter than those
given in Table I.

One concludes that a natural time scale exists
mhieh raises doubt about the use of single-deter-
minantal approximations in time-dependent quan-
tum dynamical calculations, since the character-
istic time is not so large as to guarantee easily
that the TDHF dynamics mill remain accurate
long enough to complete the description of' a nu-
clear heavy-ion collision. Conservative practice
rather recommends that the dependence D (or
some similar quantity) be computed in each TDHF
calculation as a figure of merit for the adequacy
of that approximation to the true dynamical evolu-
tion. The fact that for zero-range forces the
leading nonzero term in D(t) is infinite' suggests
that an especially cautious viem of the TDHF cal-
culations utilizing such forces is appropriate.
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This assumption we shall always utilize in the pre-
sent paper. We postpone further discussion of inaccur-
acies from limitations upon the initial conditions as out-
lined in Ref. 1 until a later report.

4The definition of the dependency per partieze, via the
factor A. ' in Eq. (3), makes the dependency range, 0
-:-D & 1, independent of A, and has the effect that the
wave function describing two or more identical nuclei
well separated in space has exactly the same value of
D(t) as that for one of the nuclei in isolation. A corre-
sponding scaling then seems appropriate in Eq. (10).

~M. K. Banerjee, Diogenes D'Gliveira, and O. J.
Stephenson, Jr. , Phys. Rev. 181, 1404 (1969).

~The label "Pauli" here is used to identify "exclusion"
effects, as distinguished from "exchange" effects.
This usage is consistent with the term "Pauli break-up'"
proposed by B. L. Gambhir and J. J. Griffin [Phys. Rev.
C 7, 590 (1973), and Phys. Lett. 508, 407 (1974)l for
use in the reaction theory of multi-nucleon projectiles,
and the term "Pauli anisotropy" for corresponding ef-
fects upon angular distribution from N. Austern, Phys.
Lett. 618, 7 (1976).

Vfe note that the Boltzmann time, 7.~, of Eq. (20),
and as well the dependency lifetime itself in Eq. (9),
diminish with the range of the two-nucleon interaction,
approaching zero for the limit of a force proportional
to &(r,-rt). Thus for TDHF calculations involving zero-
range forces, the present discussion suggests extreme
caution, since the basic Hartree-Fock assumption is
grossly inconsistent with the time-dependent Schrod-
inger equation of the system.

These arguments tacitly omit the possibility of co-
herent effects. Therefore, they should not be consid-
ered as unexceptionable. Indeed, any stronger conclu-
sion would violate the principle of commensurability
proposed in Ref. 1, since one knows that for some nu-
cleon-nucleon forces (long range), the Hartree-Fock
description may be very accurate. A more stringent
conclusion is therefore "commensurable" only with a
theory in which the specific nature of the two-nucleon
interaction provides an explicit prior condition for its
validity.


