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Quantum Mechanical Theory of Hydrogen Diffusion*
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A quantum mechanical description of low-concentration hydrogen diffusion is presented.
Using the Kubo formula for the diffusion coefficent, harmonic wave functions for the hy-
drogen atoms, and polaronic wave functions for the lattice, an exact expression for the
diffusion coefficent can be found. Two interesting predictions of the theory are (i) a de-
crease in the activation energy with mass for fcc metals, in agreement with experiment,
and (ii) an activated form for diffusion between localized states even in the purely tunnel-
ing regime.

The diffusion of hydrogen in metals at room
temperatures and above has been observed to dis-
play features which are not well described by
simple classical diffusion theories. " In particu-
lar, the mass dependence of the diffusion con-
stant is strongly dependent on lattice structure
and is often found to be highly nonclassical both
in the prefactor and in the activation energy.

There have been many attempts to improve the
simple classical theory by including a variety of
effects3 ' (e.g. , anharmonicity, zero-point mo-

tion, and a realistic description of the saddle-
point dynamics). However, the applicability of
these theories to hydrogen diffusion has not been
established. " Indeed, in a system in which the
energy between vibrational eigenstates of the hy-
drogen atom corresponds to 1370 K, ' as for nio-
bium, a basically quantum mechanical model is
more appropriate. Until now all quantum mech-
anica1 treatments of the diffusion process have
been restricted to simpler models than presented
here: either neglecting the polaron effects'" that
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I will show strongly influence the diffusive behav-
ior of hydrogen in metals; or including polaron ef-
fects, but treating the higher energy states of the
carrier in a qualitative manner' or not at a11.'
The present calculation is based on a model which
explicitly includes all of these effects, and fur-
thermore, neglect of any of these effects can be
shown to alter substantially the predictions of the
theory. The model is applicable to hydrogen dif-
fusing in both bcc and fcc metals and is success-
ful in accounting for the observed mass depen-
dences of t'he activation energies for both cases.

The calculation is based on the Kubo formula
for the diffusion constant, employing harmonic-
oscillator wave functions for the (tightly hound)
hydrogen atoms and conventional polaron-theory
wave functions" for the lattice. In contrast to
polaron theories for electronic or ionic trans-
port, " aQ sums over carrier states are expli-
citly performed.

It will be shown that the decrease of the activa-
tion energy with mass evidenced in fcc metals'
(which leads to heavier isotopes diffusing faster
than light isotopes below certain temperatures)
can be explained as a result of the importance of
transfer processes in which the hydrogen atom
absorbs enough energy from the lattice to be ex-
cited to a higher energy state before transferring
to a neighboring site. Thus at a temperature in
which the motion of the lattice distortion about
the hydrogen atom behaves classically, contrib-
uting a classically activated factor to the diffu-
sion coefficient, the actual activation energy
(which, classically, represents the height of the

potential barrier between sites) is found to depend

on the vibrational energy between the quantum-
mechanical hydrogen states. The energy between
hydrogen states is smaller for heavier isotopes,
resulting in a decrease in the activation energy
and hence the observed increase in diffusion rate
with mass. Other unusual mass dependences can
be found for bcc metals above room temperature
and in regions in which the lattice does not behave
classically and the diffusion process is a tunnel-

ing process for both the lattice deformation and

the diffusing atom.
In conventional electron-transport theory an

adiabatic approximation, based on the smallness
of the carrier (electron) mass compared to the
lattice (ion) mass, is usually employed. For hy-
drogen diffusion the ratio of the carrier mass to
the ion mass is of course larger but in some
cases still small enough to justify the same adia-
batic approximation. I will confine my considera-
tions to low concentrations of hydrogen, to avoid
the complications of correlation effects. Assume
that the hydrogen atom (for simplicity, neutral)
is localized on a single site (as evidenced by neu-
tron-diffraction experiments) ' and tunnels to a
neighboring site only occasionally. In addition,
assume an interaction between the hydrogen atom
on a given site and the vibrations of the surround-
ing lattice ions that is linear in the lattice dis-
placements. In contrast to the analogous problem
of electronic hopping, the hydrogen atom must
reside interstitially rather than on a single ion.
This is also in contrast to conventional theories
of defect formation and transport.

The Hamiltonian of the system is given by

a=pa, .(c-„..;..—,') Z Z(l-, .s -,..l'~,. '--, .) Z -9 .a
P' 1 m~'x' 1 m(u'(x-b)'
2m 2 1+B'x' 2 1+B'(x—b)' '

where Scoq, and c q, are the energy and creation operator, respectively, for a phonon of wave vector
q and mode s, Vq z represents the strength of the interaction of the hydrogen atom on site g with a pho-
non of wave vector q and mode s, a„gis the creation operator for a hydrogen atom localized at site g
with energy E„,and p, x, e, and m represent the momentum operator, position operator, frequency
of oscillation, and mass of a tightly bound hydrogen atom. It is assumed that b' and B' are such that
the lowest energy eigenstates of the hydrogen atom are well approximated by harmonic-oscillator wave
functions centered at x= 0 and x=b (i.e., b'»1/B'»5/m&u).

The wave functions of the Hamiltonian H are taken to have the following form:

X'"(nk) = Xi.t '"&nk) XH&",

where XH&'" is the wave function of the hydrogen atom of energy E„onsite g, and yq, «E'"(nq) is the
wave function of the lattice of jnq). phonons of wave vector (k) when the hydrogen atom is on site g,
with energy n. yq«, '" ink) has been investigated extensively" for the case in which the lattice-carrier
interaction is that between a single electron and a single ion. These results can be carried over quite
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generally to the case of the carrier being an interstitial hydrogen atom, interacting with nearest-neigh-
bor ions, by appropriate changes to the electron-lattice interaction constants. " For the purposes of
this Letter I will assume y[,«g~(nk }to be independent of n and use analogs of previously derived ex-
pressions" for g&«, g(n], }for the treatment of the lattice wave functions. It can be shown, ' '" in fact,
that the diffusion coefficient can be written in terms of these results:

t '00

&= Q —e ~e ' cos[E (t) (E„—E„.—)t/5]e"&'
I (gH'"Iv„ly' '" )I'dt,

nn' ZH ~o

where vH, E„andZH are the velocity operator, energy, and partition function, respectively, for the
hydrogen atom. If one assumes AT &LE, the Debye energy of the lattice, then it is found that for elec-
trons interacting only with acoustical phonons"

2S = 12E~k T/(Rwz)) ',

E,(t) = [12K,k T/(R[b)D) '] [sin(cb)z)t)/cuDt],

6E~ [sin~z)t -[dDt c os(~Dt) ]
(~~D) (~a)'

where && is the binding energy of the lattice deformation. For the present I assume this form for E,(t)
and E,(t), although the following results will hold in genera. l for any E,(t) which is a decreasing func-
tion of t and which has the same temperature dependence.

For the system of interest, the potential which the hydrogen atom sees can be considered to be har-
monic near the site centers. If attention is restricted to low-energy (spatially confined) states, and
thus to temperatures low compared with the height of the potential barrier between the two sites, the
eigenstates of the true potential of the hydrogen atom may be approximated by three-dimensional har-
monic-oscillator wave functions. This does not, however, require that kT be small with respect to the
observed activation energy for diffusion.

If only the transitions from a single site g to a single site g (keeping lowest-order terms in the trans-
fer integrals and lowest-order terms in 8') are considered, the sum over carrier states of

2 2 e ""I&xH'"I~HI x'"'&I' cos[(z„-z„.) t/a —E(t)]
n,n'

where b ' = 'b(m&u 2/5) and the Z„areLaguerre polynomials. " Inserting expression (4) into the sum
(3) and writing out the explicit forms for the 2„",one can recognize the expression to contain a sum
over Kummer's functions. ' Thus the sum over n' can be accomplished with the use of published for-
mulas, yielding

SAG) n

Re —g e [e' 'n, E,(n, l+) —n(n+1)X,E,(n+2, 3+)+e ' '(n+1), E,(n+2, 1, X),
m n ZH

where X = 2b '(cos[b)t —1), Z' = b 2(e' ' —1), and the, E,(x,y, z) are Kummer's functions. The sum in Ezl.

(5) can also be accomplished using published formulas, ' yielding for the diffusion coefficient (2)

R[t) eD=
[ „„„Redt[exp[P[t) —iP(t)]) exp b'

[
'( ete—i) eeisbe' i )Gs(estd)e-(6)

can be performed exactly.
The sum in (3) can be evaluated by means of a number of straightforward algebraic manipulations,

which will only be outlined briefly here. The eigenfunction of a harmonic oscillator of frequency u, en-
ergy E„,and mass m centered at site g, expressed in terms of the eigenfunctions of an oscillator cen-
tered at g, I g -g I =b, can be used to calculate the relevant matrix element which appears in the Kubo
relation for the diffusion constant:

& "I;I .g"')I = "."" (b')" "' '( & " "' '(b') -b'& " "'"(b')}' (4)
m g
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where

( 1 +e t)))bI)

G((ot) =e ' '+e' ' s~+b'(I —e ") (cos(ot-I)-i sin&bt
(1 &

- 5))br)

Some of the properties of this expression in the temperature regime characteristic of most hydrogen-
diffusion experiments will now be considered. In this regime the lattice distortion behaves classically.
Consistent with the earlier requirement that the height of the potential barrier between (low-lying) hy-
drogen bound states be large compared to kT, it is required that ,'b '5 —(2)»—,'m(o'(1/B')»k T. In addition,
assume that the lattice-hydrogen interaction is strong enough that the principal contribution to the time
integral occurs at short times compared with I/(2)D. In this case

In the evaluation of Eq. (6) two limits can be immediately distinguished: (i) (o'» 2E,kT/5' and (ii) (2)

«2E,kT/O'. In case (i) the lattice transfers energy to the hydrogen atom typically over time scales
long compared to the vibrational period of the hydrogen atom. This is the case that may apply to nio-
bium and other bcc metals near and below room temperature. Although this case will not be discussed
in detail here, an approximate evaluation of Eq. (6) in this limit results in a mass-dependent term in
the activation energy that agrees to within 30% with the corresponding term observed for niobium.
However, such agreement with experiment must necessarily be considered qualitative since the con-
dition (i) is only approximate for niobium.

For case (ii) the lattice typically transfers energy to the hydrogen atom on time scales short com-
pared to the vibrational time of the hydrogen atom. This case may be typical of fcc metals at high
temperatures. When @Take the diffusion coefficient is given by

1 mh skT '~' -(E + —'k(dt)') h(oI 2(Z~+ —brub ) 22T 22T(2b +Bb/br')) (7)

The quantity 4b'S~, which is an upper bound on
the size of the potential barrier between the two
stationary wells of the hydrogen atom, is inde-
pendent of mass. Thus the pre-exponential term
in expression (7) is proportional to m ', while the
activation energy contains a small term propor-
tional to m '. This additional term in the acti-
vation energy can be directly related to the im-
portance of tunneling processes in which the hy-
drogen atom transfers to a higher energy state,
by absorbing energy from the lattice, before tun-
neling. It is always small compared to other
terms in the activation energy, and is in rough
agreement with the observed results in fcc met-
als. ' [Note that in the special case when E,/2 is
negligible compared to the potential barrier be-
tween wells (hence E„«—,'b'In)), the lattice serves
only as a thermal reservoir in a quantum me-
chanical description of Brownian motion between
two wells. " In this case and when P = 1, Eq. (7)
agrees with the high-temperature results of
Weiner and Partom. ']

It should be noted that the prefactor of the dif-
fusion constant obtained from experiments on fcc
metals is often found to have the m '~ behavior
predicted by classical theory, although consid-
erable deviation from this behavior is also seen.

l The results given here do not reproduce this de-
pendence, so it is clear that this is far from a
complete description. Modifications of the ap-
proach to include a more satisfactory treatment
of over-the-barrier hops and of the hydrogen-
phonon interaction are being considered. In ad-
dition it should be possible to apply this model to
the study of hydrogen-ion diffusion, specifically
the case-(ii) results which presume a strong hy-
drogen-ion-lattice interaction.

The author is grateful to W. J. Camp and K. K.
Murata for a careful reading of the manuscript
and a number of helpful discussions, and to
D. Emin for suggesting the incorporation of pola-
ron theory into the present investigation of ionic
diffusion.
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Superconducting weak links are studied in which the weak region is created by locally
driving the superconductor out of equilibrium using an independent source of quasiparti-
cles. The characteristics of these weak links can be varied electrically or optically at
any temperature below T . A simple model which describes the dependence of weak-link
critical current on quasiparticle-injection rate is presented.

A common feature of all superconducting weak
links is a localized region of depressed supercon-
ducting order parameter separating two supercon-
ductors. The size of the localized weak region
must be comparable with or smaller than a char-
acteristic length of the superconductor, generally
supposed to be the temperature-dependent coher-
ence length $(T). This condition imposes rather
severe constraints on the fabrication and opera-
tion of weak links. The link dimensions must be
at the micrometer level and desired operating
characteristics can often be achieved only within
a rather restricted temperature interval. We re-
port here some initial experimental observations
on a new class of weak links in which the weak re-
gion is not a result of a fabrication process, but
is created by locally driving the superconductor
out of equilibrium using a source of quasiparti-
cles which is independent of the primary weak-
link circuit. ' The characteristics of these weak
links ean be electrically or optically varied at any
temperature below T,. We also present a simple
model, based on current understanding of the non-
equilibrium superconductor, which accounts for

the dependence of the weak-link critical current
on quasiparticle-injection rate.

Consider a narrow thin-film strip of supercon-
ductor, a microbridge of width W. Suppose it is
possible by some means to inject or create ex-
cess quasiparticles over a length I. of the micro-
bridge. The resulting excess quasiparticle densi-
ty will be position dependent, varying slowly with-
in I and falling to zero outside I in a distance of
the order of the guasiparticle diffusion length A.

=(vqzlw, tt/3) . Here v„pis an average guasiparti-
cle velocity approximately equal to the Fermi ve-
locity, l is the quasiparticle elastic scattering
mean free path, and v, qq is a characteristic quasi-
particle relaxation time, probably the effective
quasiparticle-recombination time. The excess
quasiparticles will depress the super conducting
order parameter over some distance ~-I-+2~,
creating a weak link if A is sufficiently small and
the depression sufficiently strong. The charac-
teristics of this weak link, e.g. , the critical cur-
rent, depend basically on ~ and on & . , the gap
parameter at its minimum within L. These pa-
rameters in turn depend in a rather complicated
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