and E. Pytte. Samples of $2H$ -TaSe₂ were provided by S. F. Meyer. It is a pleasure to thank these people.

¹P. M. Williams, G. S. Parry, and C. B. Scruby, Philos. Mag. 29, 695 (1974).

 $2J. A. Wilson, F. J. Di Salvo, and S. Mahajan, Adv.$ Phys. 24, 117 (1975).

 ${}^{3}D$. E. Moncton, J. D. Axe, and F. J. Di Salvo, Phys. Rev. Lett. 34, 734 (1975).

 $4W$, L. McMillan, Phys. Rev. B 12, 1187 (1975).

 ${}^{5}C$. Berthier, D. Jerome, P. Molinie, and J. Rouxel, Solid State Commun. 19, 131 (1976).

 6 J. E. Smith, Jr., J. C. Tsang, and M. W. Shafer,

Solid State Commun. 19, ²⁸³ (1976); see also J. R. Duf-

fey, R. D. Kirby, and R. V. Coleman, Bull. Am. Phys.

Soc. 21, ²⁶⁰ (1976); M. V. Klein, J. A. Ho1y, and S. F.

Meyer, Bull. Am. Phys. Soc. 21, 338 (1976).

 7 M. J. Rice and S. Strässler, Solid State Commun. 13,

1931 (1974); P. A. Lee, T. M. Rice, and P. W. Anderson, Solid State Commun. 14, 703 (1974).

 ${}^{8}E$. F. Steigmeir, R. Loudon, G. Harbeke, and K. Anderset, Solid State Commun. 17, 1447 (1975).

 ${}^{9}C$. S. Wang and J. M. Chen, Solid State Commun. 14, 1145 (1975).

 0 The value of 85 cm⁻¹ is based on the neutron scattering data of Moncton, Axe, and Di Salvo (Ref. 3). The LA phonon dispersion of $2H$ -NbSe₂ at 300 K shows only a very weak dip near the CDW wave vector and only a very weak temperature dependence. This is consistent with the assumption that any Kohn anomaly is quite weak at 300 K. Furthermore, we note that our choice of $\omega_0 = 85$ cm⁻¹ really represents the smallest likely value; any large value would result in even lower estimate for the value of Λ , consistent with the fact that only a small fraction of the Fermi surface is affected by the CDW transition.

 $¹¹P$. Garoche, J. J. Veyssié, P. Manuel, and P. Moli-</sup> nie, Solid State Commun. 19, 455 (1976).

 12 J. Petzelt and V. Dvorak, J. Phys. C 9, 1571 (1976).

Pronounced Isotope Effect in the Superconductivity of $HfV₂$ Containing Hydrogen (Deuterium)*

P. Duffer, D. M. Gualtieri, and V. U. S. Rao

Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (Received 4 August 1976)

Superconducting transition temperatures of HfV_2H_r and HfV_2D_r have been measured in the composition ranges $x = 0-1.5$ and $x = 0-1.0$, respectively. Hydrogen or deuterium absorption is found to decrease T_c of HfV₂. Pronounced isotope effects have been observed. At $x = 1$, hydrogen absorption reduces T_c by 4.8 K while deuterium absorption reduces T_c by 6.9 K with respect to HfV_2 .

Superconductivity in metal-hydrogen systems has recently been a subject of considerable interest due to the possibility of finding high T_c in these materials via an attractive pairing interaction arising from the high-frequency vibrational modes of the proton lattice. Detailed studies have so far been carried out on the hydrides and deuterides of thorium¹ and palladium.²⁻⁵

It is interesting to note that although Pd itself is not superconducting, Pd-H and Pd-D exhibit T_c values as high as 9 and 11 K, respectively.³⁻⁵ Moreover, in Pd-Cu-H, Pd-Ag-H, and Pd-Au-H systems, high T_c values of 16.6, 15.6, and 13.6 K, respectively, could be attained. 6 Since, in the absence of hydrogen, these alloys are nonsuperconducting, it is evident that the appearance of superconductivity in the hydrides of Pd and Pd-noble-metal alloys is not just a result of the quenching of spin fluctuations as was supposed μ denoting of spin fluctuations as was supposed earlier.⁷ It seems to have its origin^{8,9} in the enhanced pairing interaction arising from the highfrequency optic phonon modes¹⁰ associated with

1410

the proton (or deuteron) lattice.

Another interesting feature is the discovery that $Th₄H(D)₁₅$ exhibits no detectable isotope effect¹ while Pd-H(D) exhibits a pronounced reverse isotope effect³⁻⁵ (T_c for PdH~9 K and for PdD~11 K). The reverse isotope effect in PdH(D) has been explained separately on two different models. The first model' involves the influence of the optic modes on the electron-phonon coupling in PdH and PdD. The second model' attributes the effect to the difference in electronic structure due to the H atom spending more time in the proximity of the Pd atom than the D atom.

In view of these interesting features, further studies are needed to understand the nature of superconductivity in metal-hydrogen systems. The hydrides of the cubic Laves (C15) phase alloys Hf_x $Zr_{1-x}V_2$ are well suited for a detailed investigation because of their high T_c and H_{c2} valvestigation because of their high T_c and H_{c2} values¹¹⁻¹⁵ T_c =8.6 to 10.1 K, $H_{c2}(4.2)$ =100 to 230 kOeJ and ability to absorb large quantities of hydrogen at room temperature and moderate pres-

sures.^{16,17} At 300 K and 500 psi pressure, the amount of H (or D) that is introduced ranges¹⁷ from 1.⁵ to 1.85 ^H (or D) atoms per metal atom in the compositions $Hf_x Zr_{1-x} V_2$. The crystal structure does not change, but the cubic lattice parameter is increased considerably upon introparameter is in<mark>creas</mark>
ducing hydrogen.^{16,17}

In this Letter we report the results of T_c measurements on $HfV_{2}H(D)$, alloys. Of special interest are two remarkable observations. (i) T_c decreases rapidly upon introducing H or D into $HfV₂$. (ii) A large "normal" isotope effect is observed in contrast to the behavior of $PdH(D)$ _r and $Th_4H(D)_{15}$ mentioned earlier.

The HfV₂ alloy samples were prepared by induction melting of the elements, followed by annealing at 800'C for 100 h. The samples were then alloyed with high-purity hydrogen or deuterium at room temperature and 500 psi pressure to yield the composition $HfV_2H(D)_{4.54}$. A range of $HfV_2H(D)$, compositions was made by equilibrating various ratios of $HfV_{2}H(D)_{4.54}$ with virgin HfV₂ in sealed quartz tubes at 450° C for 48-72 h. X-ray diffraction revealed the C15 structure for all compositions. The variations of the lattice parameter in the composition range $x=0$ to 1.25 is shown in Fig. 1.

Most of the samples were powdered, because of absorption of hydrogen. A sensitive inductance bridge circuit was used¹⁸ to measure T_c . H_{c2} was also measured as a function of temperature in some samples using a 120-kOe superconducting magnet. The superconducting-normal transitions were rather wide (~0.8 K). T_c was measured as

FIG. 1. Cubic lattice parameter versus x in HfV_2H_r and HfV_2D_x .

the temperature at which dV/dT was a maximum. ^V being the voltage signal proportional to the imbalance in the bridge circuit caused by the transition. T_c values obtained in this manner were reproducible to within 0.1 K.

 T_c data for various $HfV_2H(D)$, compositions are presented in Fig. 2. The effect of both hydrogen and deuterium absorption is to reduce T_c . At x = 1, hydrogen absorption reduces T_c by 4.8 K while deuterium absorption reduces T_c by 6.9 K. The reduction in T_c seems also to be accompanied by a reduction of H_{c2} , as exemplified by the curves of H_{c2} vs T for HfV_2 , $\text{HfV}_2\text{H}_{0.5}$, and $HfV_2D_{0.5}$ (Fig. 3).

It is interesting to note that, if one denotes by $\Delta T_c(x)$ the reduction in T_c from the parent HfV₂ upon the addition of x moles of H or D, one observes that

$$
\Delta T_c(x) \propto M^{0.5},\tag{1}
$$

where M is the mass of H or D , as the case may be. A clear interpretation of this result may have to await experimental information on the electronic structure and phonon spectra of $HfV₂H(D)_x$. Nevertheless, since the lattice parameters of HfV_2H_r and HfV_2D_r are very nearly the same (Fig. 1), one may surmise that the acoustic phonon characteristics associated with the metal atom vibrations should be nearly the same for the two cases and therefore may not be responsible for the pronounced T_c difference between HfV_2H_x and HfV_2D_x . Hence, it indicates that the difference may arise from the high-frequency local modes associated with the H or D atoms. There is also the possibility that the isotope effect is a consequence of the difference be-

FIG. 2. Variation of T_c with x in HfV₂H_x and HfV₂D_x.

FIG. 3. H_{c2} of HfV₂, HfV₂H_{0.5}, and HfV₂D_{0.5} as a function of temperature.

tween the electronic structure of $HfV_{2}H_{r}$ and $HfV₂D_r$, as will be discussed later.

For a discussion of the results one may use McMillan's expression¹⁹ for strong-coupled superconductors which may be written

$$
T_c = \frac{\theta_{\rm D}}{1.45} \exp \left[\frac{-1.04(1+\lambda)}{\lambda - \mu * (1 + 0.62\lambda)} \right],
$$
 (2)

where $\theta_{\rm D}$ is the Debye temperature, μ^* is an electron-electron interaction parameter, and λ is the mass enhancement factor arising from electron-phonon interaction. It is of interest to obtain λ as a function of H or D concentration in HfV_2H_r and HfV_2D_r . One may reasonably choose μ^* ~0.13 for transition metals.^{19,20} Specific-heat measurements of $HfV₂$ by Rapp and Vieland²¹ yield θ_{D} = 190 K. Similar measurements have not yet been made for alloys of $HfV₂$ with H and D. For the present, if one assumes the same value of $\theta_{\,\mathrm{D}}$ for the superconducting composition HfV_2H_x and HfV_2D_x , one obtains the variation of λ with x as shown in Fig. 4. These plots would be changed if future heat-capacity measurements show that the above assumption is not valid. It may be mentioned, in passing, that in the Pd-H system very little change in θ_D was observed upon hydrogenation, from low-temperature heat
capacity measurements.²² capacity measurements.

The parameter λ obtained by the above procedure is very helpful in the understanding of the mechanism of superconductivity in various systems. For pure metals, one may follow McMil $lan¹⁹$ in writing

$$
\lambda = n(E_{\mathbf{F}})\langle I^2 \rangle / M \langle \omega^2 \rangle \tag{3}
$$

where $n(E_F)$ is the density of states at the Fermi

FIG. 4. The electron-phonon coupling constant λ , as a function of composition in HfV_2H_x and HfV_2D_x .

level, $\langle I^2 \rangle$ is an average over the Fermi surface of the square of the electron-phonon matrix element, M is the atomic mass, and $\langle \omega^2 \rangle$ is the second moment of the phonon frequencies as de-
fined by McMillan.¹⁹ For alloys containing H, I fined by McMillan.¹⁹ For alloys containing H, D, or other light atoms, it has been suggested 23,9 that λ can be separated into contributions arising from the light and heavy atoms. However, a detailed interpretation of the measured λ values for $HfV₂H_r$ and $HfV₂D_r$ must await heat-capacity and other measurements on these systems. These are being planned for the near future.

Potentially, the data on $(dH_c/dT)_T$ are capable of providing information on the electronic structure through the relation²⁴

$$
-(dH_{c2}/dT)_{T=T_c} = 0.439 \times 10^3 \rho_0 \gamma , \qquad (4)
$$

where ρ_0 is the residual resistivity in units of $10^{-6} \Omega \cdot cm$ and γ is in units of mJ cm⁻³ K⁻². For HfV₂, our measurements yield $\rho_0 = 62 \mu \Omega \cdot cm$ in agreement with Inoue, Tachikawa, and Iwasa¹⁴ and the specific heat measurements²¹ give γ $=1.881$ mJ cm⁻³. Using the experimental values of ρ_0 and γ one obtains for HfV₂,

$$
-(dH_{c2}/dT)_{T=T_c, cal} = 61.2 \text{ kOe K}^{-1},
$$

in reasonable agreement with the experimentally determined value (Fig. 3)

$$
-(dH_{c2}/dT)_{T=T_c, \text{ exp}} = 43 \text{ kOe K}^{-1}.
$$

If ρ_0 values for HfV₂H_r and HfV₂D_r were available, the above procedure could be used to obtain γ and hence $n(E_{\rm F})$ as a function of x. Since the samples crumble into powder, it is difficult to perform these measurements. If, however, one assumes for example, that ρ_0 is nearly the same for

HfV₂H_{0,5} and HfV₂D_{0,5}, the data on $(dH_{c2}/dT)_{T=T}$ (Fig. 3) indicate that γ for $\mathrm{HfV_{2}H_{0.5}}$ is nearly 1.4 times the γ of HfV₂D_{0,5}. Hence, at least qualitatively, it is capable of explaining the difference in λ between $\text{HfV}_2\text{H}_{0.5}$ and $\text{HfV}_2\text{D}_{0.5}$ (Fig. 4). Thus at this stage it is not possible to say whether the strong isotope effect arises from the high-frequency local modes or the differences in $n(E_F)$.

In conclusion, it is clear that the influence of hydrogen on the superconductivity of different metal and alloy systems is quite varied. In some systems T_c is enhanced (e.g., Pd-H and Th₄H₁₅) while in others it is depressed (e.g., $HfV_{2}-H$). The isotope effect on T_c with respect to H and D shows pronounced "normal" (e.g., $HfV_{2}-H$ or D), "reverse" (e.g., Pd-H or D) or very weak (e.g., Th_4H_{15}) trends. Much further work is needed to obtain a clear understanding of the superconducting behavior of metal-hydrogen systems.

*Work supported by the U. S. Energy Research and Development Adminstration through Contract No. E(11- $1)-3429.$

- ¹C. B. Satterthwaite and I. L. Toepke, Phys. Rev. Lett. 25, 741 (1970).
- 2 T. Skoskiewicz, Phys. Status Solidi (a) 11, K 123 (1972).
	- 3 B. Stritzker and W. Buckel, Z. Phys. 257, 1 (1972). ${}^{4}R.$ J. Miller and C. B. Satterthwaite, Phys. Rev.
- Lett. 84, 144 (1975).
- 5 J. E. Schirber and C. J. M. Northrup, Jr., Phys. Rev. B 10, 3818 (1974).

 6 B. Stritzker, Z. Phys. 268, 261 (1974).

 ${}^{7}K$. H. Bennemann and J. W. Garland, Z. Phys. 260 ,

867 (1978).

 ${}^{9}D$. A. Papaconstantopoulos and B. M. Klein, Phys. Rev. Lett. 15, 110 (1975).

 10 J. M. Rowe, J. J. Rush, H. G. Smith, M. Mostoller, and H. E. Flotow, Phys. Rev. Lett. 33, 1297 (1974).

B. T. Matthias, V. B. Compton, and E. Corenzwit, J. Phys. Chem. Solids 19, ¹³⁰ (1961).

 $12V$. Sadagopan, E. Pollard, and H. C. Gatos, Solid State Commun. 8, 97 (1965).

 $13K$. Yasohama and N. Usui, Jpn. J. Appl. Phys. 7 , 1128 (1968). '

 14 K. Inoue, K. Tachikawa, and Y. Iwasa, Appl. Phys. Lett. 18, 285 (1971).

¹⁵P. Duffer, S. G. Sankar, V. U. S. Rao, R. L. Bergner, and R. Obermyer, Phys. Status Solidi 31, 655 (1975).

 16 A. Pebler and E. A. Gulbransen, Trans. Metall. Soc. AIME 239, 1593 (1967).

 17 D. M. Gulatieri, P. Duffer, and V. U. S. Rao, to be published.

 ^{18}P . Duffer, D. M. Gualtieri, and V. U. S. Rao, in Proceedings of the Joint International Magnetics and Magnetism and Magnetic Materials Conference and Exhibit, Pittsburgh, Pennsylvania, 15-18 June 1976 (to be published) .

 19 W. L. McMillan, Phys. Rev. 167, 331 (1968).

 20 J. R. Gomersall and B. L. Gyorffy, Phys. Rev. Lett.

33, 1286 (1974).
²¹O. Rapp and L. J. Vieland, Phys. Lett. <u>36A</u>, 369 (1971).

 22 C. A. Mackliet and A. I. Schindler, Phys. Rev. 146 , 468 (1966).

 23 J. C. Phillips, in Superconductivity in d- and f-Band Metals, AIP Conference Proceedings No. 4, edited by D. H. Douglass, Jr. (American Institute of Physics, New York, 1972), Vol. 4, p. 339.

 24 See, for example, G. D. Cody and G. W. Webb, Crit. Rev. Solid State Sci. 4, 27 (1973).

Band-Structure Effects in the Selective Adsorption of Helium on Sodium Fluoride*

Michael P. Liva, Gregory Derry, and D. R. Frankl

Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802 (Received 26 July 1976)

Splitting of energy levels of atoms bound to a crystal surface have been observed in atomic beam scattering.

A free atom approaching a crystal surface may undergo a "selective adsorption" transition into a state in which it is bound to the surface but translating rapidly across it. The phenomenon was first observed by Frisch and Stern,¹ and the basic explanation was put forth by Lennard-Jones and Devonshire² as a resonance between the initial free-particle energy $h^2k^2/2m$ (where \vec{k} is the wave vector and m the mass of the atom) and the

final-state energy

$$
E_{\text{final}} = E(j, \vec{\mathbf{K}}'). \tag{1}
$$

Here, j is the "vibrational quantum number" associated with the motion normal to the surface and \vec{K}' is the wave vector of the Bloch wave describing the parallel motion. Because of the conservation of crystal momentum in the two-dimensional periodic potential near the surface, \vec{K}'

 8 B. N. Ganguly, Z. Phys. 265, 433 (1973).