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The influence of the laser fluctuations on resonance fluorescence is treated exactly
within the framework of multiplicative stochastic processes. For the phase diffusion
model of the laser, I find that, in the limit of strong fields, the ratios of the width and
height of the central peak to the side peak are, respectively, 2/3x and 3x, where x=(p
+y,)/(g +2y,). The envelope of the intensity correlations is found to decay at the rate (3 y

+ y, )/2.

The theory of resonance fluorescence in single-
mode laser fields with definite amplitude and
phase is by now fairly standard' ' and has recent-
ly been investigated by several experimental
workers. ~' An important problem here having
direct bearing on experiments is how the tempo-
ral fluctuations of the laser beam affect the char-
acteristics of the resonance fluorescence. In a
recent paper, ' Eberly has developed a theory to
take into account the effect of the amplitude fluc-
tuations of the laser beam on the spectrum of res-
onance fluorescence. In this Letter, I report an
exact theory which takes into account the effect of
temporal fluctuations of the laser beam on the
spectrum of resonance fluorescence, the anti-
bunching effects, and the evolution of the atomic
populations, dipole moment, etc. The theory
which I present here is for a single two-level
atomic system and is easily generalized to multi-

level systems, ' to cases when other relaxation
mechanisms, such as collisional relaxation, ' af-
fect strongly the scattering. The approach in the
present work is also applicable to experiments
on level crossing with paritally coherent light.
The theory should also have applications to laser-
induced chemical reactions, since the underlying
dynamical equations have very similar structure.
From the viewpoint of statistical mechanics, my
work provides one example of the very few exact-
ly soluble models.

A fully quantum-electrodynamic theory of reso-
nance fluorescence in nonfluctuating fields is pre-
sented in Ref. 2 (see also Refs. 1b, 3). The spec-
trum calculated there is in agreement with the
one calculated by Mollow" earlier. In this ap-
proach, the atomic dynamics of a two-level atom
(with energy separation w) interacting with the
zero-point fluctuations and an external laser
beam is described by

= —i(~ —
&u, )is', pJ —y(s'» p —2s ps '+ps's )+,'-idjs' Slt)+s g*(t), pJ,

where h(t) is the slowly varying part of the electric field of the laser beam of frequency ~„2y is equal
to Einstein A coefficient. The density operator p is in a frame rotating with the frequency of the exter-
nal field. For fluctuating laser beams, the field $(t) is a stochasic variable and, thus, I have a case
of stochasic Liouvillian; and such cases have been treated in a number of approximate ways in the lit-
erature.

Here I treat the phase diffusion model of the laser and obtain exact results using the techniques of
multiplicative stochastic processes. " In this model the temporal phase fluctuations of the laser beam
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are described by

g(t) = hoe
' +'), y(0) = y(„

where go is nonstochastic, yo is the phase variable which is uniformly distributed, and i()(i) is the sto-
chastic phase variable; the dynamics for y(t) is Markovian:

j (i) = v(i), 9(i) = o, n(i, )u(i, ) = 2~,&(i, —i,),

and p (f) is a Gaussian random force which is 6 correlated. For this model all the correlation func-
tions of $(t) can be calculated in analytic form. I now introduce the following column matrices

Using Eqs. (1) and (3), one finds that these column matrices satisfy

g= [A, +ii)(t)A, J(l), X
= [Ao+ ip(t)(A)+1)J y,

(4)

0
0 -y
to( —t o(

0 0

2SQ

2SA
—2y
0

(A, );,= ~;,(~;, —~,,),-y' e= ~dS, .

Since (5) has the form of the equations of muittp]icatjve stochastic processes )0 the exncf equations for
(l, and X averaged over the ensemble of p (t) are found to be

y+y, 0 —2io. o

0 y+y, 2io. 0

l
—'EcY 'E A 2y

0 0 0

0 —2io. 0
y+ 4y, 2io. 0

X =&X
'EQ 2y+y~
0 0'y.

Equation (7) gives the ensemble-averaged mean values of (s') and (s'). Explicitly, I have for the La-
place transforms of (s') and (s'),

(s') =f '(z)(z+r+~. )'((s'(0)) -~&zJ, (8)

(s') =g '(z){(z+@+4@,)(z+ 2@+y)+ 2cP)(s'(0)), (g)

where the polynomials f and g are given by

~()=(+~ ~.)[("»)("~ ~.) 4 J,

a(z) = (z+r)(z+»+~.)(z+~+4~,)+4~'(z+~+».).
(10)

In deriving (8) and (9) one has assumed that the initial values of (s') and (s') are independent of the
distribution of p. Note that in the limit of infinite correlation time y, —0, f(z) =g(z). Thus in presence
of laser correlations, the time dependences of (s') and (s') are governed by two different polynomials.
I shall show later that the roots of f(z) are important for the antibunching effects, whereas the roots of
g(z) are important for the spectrum of the resonance fluorescence.

It should be noted that the stochastic behavior of the extended system is Markovian and hence I can
still use the regression theorem to calculate the two-time correlations. Using (7) and the operator al-
gebra, I get the two-time atomic correlation function

( (i+ ) (i)) = ( ')„f-.+(t,(i))+f,(i)(( ')„--( ')„l, (12)

where the solution for T() is obtained from (7). From (12), the steady-state spectrum h(&u) follows:

&(~)= &e g '(z)(z+x, ) 'o'[n'+z~(w+~, )J 'l2&'(z+w+4~, )
g~kQ'

("~)(~+ (* &+4~)(»+~.)H) (13)

As before, the spectrum is found to be symmetric. The contribution from the pole at ~ = -y, should be
subtracted~his is the analog of the coherent contribution which is now broadened because of the finite
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correlation time of the laser beam. I will give the numerical evaluation of the spectrum (13) [including
the transient spectrum (12)J elsewhere. In order to bring out some salient features of the influence of
the laser phase fluctuations, I consider the limiting case when the Rabi frequency is much larger than

y (i.e. , 2o. »y). In this case, the roots of g(z) are simply

z = —(y+2r, ), —,'(r—+y,)+ 2in. (14)

It is then seen that the ratio of the widths of the central peak to side peak is —,(y+ 2y,)/(y+y, ), which
should be compared with the case of no correlations (i.e. , when the widths are in the ratio 1:—,). An ex-
amination of peak heights shows that the ratio between the central- and the side-peak heights is 3(y+y, )/
(y+2y, ) which should be compared with the factor of 3 in the absence of laser correlations. It is thus
clear that in order to see the effects of laser fluctuations, the bandwidth of the laser should be compar-
able to the natural width; and hence the experiments to look for the effect of laser fluctuations should
be done with partially coherent light. In this connection it may be noted here that many experiments on
laser spectroscopy are performed with dye lasers, which may have large bandwidths. ""

I now examine the effect of the laser phase fluctuations on the antibunchinl effects' in resonance flu-
orescence. Since the behavior of the augmented system is Markovian, the result for the intensity cor-
relations follows from a recently proved theorem. "

(15)

where f(t) [g(t) J is the probability of finding the atom in the excited state at time f, if at t= 0 it was in
the state p(0) (ground state). Using (7), I have again checked the validity of (15). The explicit result
for the second-order intensity correlations is

lim (:l(t)I(t+ r):)/(lim (l(t))) —1 = —e "'[(x/y) siny T+ cosywj,

x = (3y + y ) /2, y = 2 a( 1 - [ (y —y ) /16 u JJ
' . (16)

One again has antibunching effects. The envelope
of oscillations (in the limit 2n»y) now decays
faster at the rate (3y+y, )/2.

I would like to emphasize here that I was able
to obtain exact results because the model for the
laser beam was a rather simple one. For more
complicated models, one should resort to other
techniques. I have, for example, used the projec-
tion operator techniques" to derive exact equa-
tions of motion for the laser field ensemble-aver-
aged, one-time, and multitime correlation func-
tions. I have further shown that these equations
lead, for the phase diffusion model, to the results
discussed above. Both amplitude and phase fluc-
tuations of the laser beam can be taken into ac-
count by combining the techniques of projection
operators and those of this work. A result of this
analysis is that the ratio of the widths of the side
peak to the center peak is ~z(y+y, +X,/3)/(y+ 2y, ),
where A. , ' is the correlation time of the ampli-
tude fluctuations and 2n»y.

Finally, I would like to mention that in the above
treatment, the laser field has been treated clas-
sically~his restriction, however, is easily re-
moved. I hope to discuss this and the above-men-
tioned generalizations elsewhere.
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