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A procedure is given to estimate the decay probability of a metastable vacuum state in

quantum field theory. As an application, in the Weinberg-Salam model the lower bound

(for 0& ——35') on the Higgs mass can be reduced from 4.9 GeV, corresponding to effec-
tive stability of a metastable vacuum.

The vacuum state of a quantum field theory is
traditionally defined to be that state with zero
occupation numbers or, alternatively, that state
of lowest energy. The properties of the vacuum
state are of special importance when spontaneous
breakdown of symmetry occurs, for the symme-
try of the vacuum then becomes as significant as
the symmetry of the Lagrangian defining the the-
ory.

A convenient method for identifying the vacuum
state is to compute the effective potential V[@]
which is the generating functional of one-particle
irreducible Green's functions for external sca-
lars with vanishing momenta. The vacuum state
corresponds to a minimum of the effective po-
tential.

The identification of the vacuum becomes am-
biguous when the effective potential has more
than one minimum; the standard procedure in
the literature for removing this ambiguity is to
assert that the correct vacuum must correspond
to an absolute minimum and that any nonglobal
minimum corresponds to an unstable and hence
unacceptable candidate for the vacuum. Our
present aim is to query this procedure —for if
the probability for decay is sufficiently small
(even allowing that the decay can be triggered by
quantum fluctuations at an arbitrary space-time
point), then a nonglobal minimum of V[cp] appears
to represent as good a candidate for the vacuum
as any other.

I.et the effective potential have two (or more)
minima and let us suppose that the vacuum state
realized by nature is a nonglobal minimum.
Then there is a finite probability for quantum
tunneling from this vacuum to one of lower ener-
gy. In more physical terms, quantum fluctua-
tions may spontaneously generate a "bubble"
whose interior is built upon the lower-energy
vacuum state. Such a bubble clearly has a nega-
tive volume energy but it has a positive surface
energy because of the potential barrier involved.
Thus, there is a critical size; below this size

the bubble will shrink, but above it, there is
classical instability with respect to rapid and

unlimited expansion.
In order to minimize the surface energy for a

given volume, the bubble must be spherical.
But we can go further' by noting that to calculate
the barrier tunneling it is convenient to treat it
as the classical motion in the imaginary time di-
rection. The advantage of such a Euclidean de-
scription is that the equations of motion become
O(4)-symmetric. Thus, we may treat the growth
from zero radius to the critical radius by con-
sidering a four-dimensional hypersphere. If the
radius of the hypersphere is denoted by R, the
relevant bubble action is given by

&= —p& R a+2m R'S, ,

where e and S, are the volume and surface ener-
gy densities, respectively. The stationary value
of this action is

27 r2S 4/e3
m 2 1

corresponding to the critical radius p„=3S,/e.
Assuming R is large compared to the surface
thickness (this assumption can be justified a Pos-
teriori in the example which we consider below),
the action per unit hypersurface, S, is given' by
the action for tunneling through the potential bar-
rier 1(q). In imaginary time this is the classi-
cal action for motion in the corresponding poten-
tial well, —V(rp). By considering an infinitesi-
mal change in R, it is easy to see that S, is also
the surface energy per unit area of the three-di-
mensional spherical bubble. The energy density
c is obtained directly from the difference between
the effective potential evaluated for the two vacua.

The number N of such tunnelings that have a&-

ready occurred in the past will be estimated by

N = (V„a')exp(- A ),
where V„ is the space-time volume of the back-
ward light cone and 6 is the appropriate mass
scale of the theory. To determine 6 accurately
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entails evaluating the one-loop corrections to the
WEB approximation, but for the case that we con-
sider it is sufficiently precise to set 6 =&
the mass whose Compton wavelength is the criti-
cal bubble radius.

Although the technique is of general applicabili-
ty, it is best illustrated by a specific example—the well-known steinberg-Salam theory of weak
interactions. In this theory a metastable asym-
metric vacuum state occurs when the Higgs sca-
lar mass is sufficiently small. The effective po-
tential for this model, when the gauge vector
loop corrections are included, is given by'

Vf q J =-,' p, 'q ' —X(p'+ B(p' in(q'/V'),

our general conclusions.
For the barrier penetration, the action is

S, = J "d(p(2(vt(p] —c))'~',

where the lower integration limit is prescribed
by Vjq, ] = e. Changing variables to

g = 5M,/AI„,
x = (p'/i',

one finds

S,(r) = v'(2B)'I'l(r),

where

I(r) = 1 dx —,
' (1+r) —(1+ ,'r)x-

(14)

where V is the vacuum value of the Higgs field
given by

—X/2

+xlnx-—
2x

(15)

V=(GW2) 'I'=248 Gev

64 sin't9~

for the empirical value of the mixing angle g„,
=35'. The Higgs mass is given by

MH' = V"(v) =4Bv' —8v'(A. —B) .
The difference in energy densities between the
asymmetric and symmetric vacua is

e = V(v) —V(0) = (Z —B)v'.

(5)

(8)

(8)

in which x, (r) is the solution of the transcenden-
tal equation

1+r —(1+ ,'r)x, +—x,lnx, —(r/2x, ) = 0 .
In terms of the integral I(r), the critical radius
R„(r) is given by

R (r) = 24(2B)'I'vl(r)/6M'. (1V

Finally, in computing the number N t Eq. (8)],
we need the space-time volume V„of the back-
ward light cone; corresponding to a time 10"y,
this is V„=10"'fm'. Thus, if R is in fermis and

S, in (fermi) ', one has the expression
It follows that if J3& A., the asymmetric vacuum is
absolutely stable; this occurs if the Higgs scalar
mass satisfies the inequality

M„~ M„= (4Bv')'I' =4.91 GeV. (9)

This is the lower bound advocated recently by
%einber g. '

%e now investigate the stability of the asym-
metric vacuum state when this bound is violated,
that is,

5M =M„—,'t/IH —-8&&0. (10)

To do this, we need the %KB approximation to
the one-dimensional tunneling problem between
the two potential minima. The philosophy that
we adopt here is to regard V[A] of Eq. (4) as the
real potential and calculate the classical motion
in —Vfq]; as previously mentioned, a slightly
more accurate estimate for both the tunneling
probability and the mass scale 6 in Eq. (8) may
be obtained by a more complete treatment of the
one-loop corrections, but for small eouplings the
corrections will also be small and will not alter
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From these results, we conclude that the lower

The criterion that the metastable asymmetric
minimum be a viable candidate for the vacuum
will be that N«1.

The results of evaluating numerically the inte-
gral I(r), and the corresponding values of the
critical radius R and the probable number, N,
of supercritieal bubbles created in the backward
light cone, are given for several values of M„ in
the following table:
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limit on the Higgs mass can be reduced below
that implied by Eq. (9) to about 3.5 GeV. For the
mass range 4.9 GeV) M„)3.5 GeV, the metasta-
ble asymmetric vacuum is essentially stable.

To summarize this example, I state that dis-
covery of a Higgs scalar with any mass above 3.5
GeV would lend strong support for the gauge-theo-
ry ideas. If the rrass is in the range 3.5 GeV) M„
) 4.9 GeV, however, it would suggest vacuum in-
stability; for that case, there follows a dooms-
day prediction" since a supercritical vacuum bub-
ble may be created in an ultrahigh-energy colli-
sion. Although a reliable calculation is difficult,
naive estimates indicate that the required energy
density can be closely approached in collisions
involving the highest-energy cosmic rays at -10"
GeV but is some orders of magnitude greater than
the highest artificially generated energy density
which is presently attained at the CERN intersect-
ing storage rings.

Upon returning from this model to the general
case, it appears that the various field theories, '

for which the effecitve potential has been calcu-
lated up to the one-loop level, must be re-ex-
amined in the light of this new viewpoint. As in
the Weinberg-Salam model, it is likely in other
quantum field theories that, for a given range of
the parameters in the Lagrangian, quite different
theories can occur, depending on the arbitrary

choice between absolutely stable and metastable
(but practically stable) vacuum states.
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We have measured 29 pionic-atom transitions in eight elements. From the best twelve
transitions, we obtain m~-=139 568.6~ 2.0 keV/c .

Pionic-atom transition energies provide the
most accurate determination of the v mass
(m, ). By choosing transitions for which correc-

tions to the Klein-Gordon equation are small and
relatively well understood, m, can be extracted
with an accuracy limited principally by statistics
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