
PHYSI CAI. RK VI K%' LETTERS 15 NovEMBER 1/76

COMMENTS

Lowering of Dimensionality in Phase Transitions with Random Fields*

Amnon Aharony and Yoseph Imry
Department of Physics and Astronomy, Tel-Aviv University, Ramat-Aviv, Israel

Shang-keng Maj
Department of Physics and Institute for Wre and Applied Sciences, University of California,

San Diego, La Jolla, California 92037
(Received 20 August 1976)

We prove that to all orders in perturbation expansion, the critical exponents of a
phase transition in a d-dimensional (4& d & 6) system with short-range exchange and a
random quenched field are the same as those of a (d —2)-dimensional pure system.
Heuristic arguments are given to discuss both this result and the random-field Ising
model for 2&d& 6.

The effects of a random quenched magnetic
field (or, in general, field conjugate to the order
parameter) on a magnetic (other) phase transi-
tion have recently been studied by several au-
thors. ' Renormalization- group ar guments
show' that for such systems the classical mean-
field-like behavior is found at dimensions d above

d, =6, instead of at d, =4 for the "pure" systems.
Similarly, for systems with continuous symmetry
(n~2, where n is the number of spin components),
these systems have no long-range order for d&d,
=4 (compared to d„=2).' For Ising systems (n
= 1), d, = 2 (compared to d, = 1).

The results for n ~ 2, together with a compari-
son of the renormalization-group calculation of
critical exponents to order e (~ = 6 —d)' with their
counterparts in the usual c expansion for pure
systems (where @=4-d), seem to indicate that
critical properties of continuously symmetric
systems with random fields in d dimensions are
closely related to those of pure systems in d-2
dimensions. Indeed, Grinstein' observed that the
hyperscaling law dv=2- o. (v and e are the cor-
relation-length and specific-heat exponents) is
violated for the random-field systems, being re-
placed by (d —2)v = 2 —n up to order c'. Similar
results were earlier found exactly for the ideal
Bose gas, which is equivalent to the limit n =~.'

In this note we prove exactly, that the d-dimen-
sional random-field problem is indeed equivalent
to the (d-2) dimensional pure problem, term by
term, in Perturbation theory. In particular, this
implies that the c expansions (d = 6 —c for "ran-

dom field" and d =4 —e for "pure") of all critical
exponents are the same to all orders. Similarly,
the 1/n expansions (for 4& d«6, random; and 2

& d& 4, pure) of these quantities are identical to
all orders. Vhthin these expansions, all random

hyperscaling laws at d dimensions must have d
—2 instead of d in the appropriate formulas.

%e interpret this result physically by noting
that sufficiently close to T, the dominant disor-
dering agent becomes the random field instead of
the thermal fluctuations. A heuristic argument
is used to show that the former effective disor-
dering energy for a coherence volume $" is now

proportional to $', instead of h, T (-$'). This re-
duces the effective dimensionality of the problem
by two.

Since for n= 1, d, is equal to 2 (instead of d, =1
+ 2 = 3)i it ls clear that the rule d d —2 may not

apply for n =1 at low dimensionalities. This is
probably due to the nonconvergence of the expan-
sions for large e and 1/n. We shall therefore
give a separate, heuristic, discussion of the Is-
ing random case at the end.

Following Ref. 1, we start with the Ginzburg-
Landau-Wilson (GLW) Hamiltonian

X= —Jd'x$ , Ir[ v(x)[—'+(Vv)'J+u[vi'+h(x) v(x)j,

where v(x) is the order parameter, and h(x) is a
random-field variable, with h =0 and (Gaussian)
correlations (in Fourier space)

h (k)h (k') =6 85(k+4')f (k),
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(a)

FIG. 2. A typical one-loop diagram, with l =4 inter-
nal lines.

FIG. 1. Typical diagrams which appear in the Feyn-
man graph expansion. Vertices denote the GLW four-
spin coupling u, while empty circles denote the random
field variable ~. (a} Diagrams for the free energy;
(b) diagrams for the spin-spin correlation function.

where f(0) = A c0, and the bar denotes averaging
over r andom-field configurations.

For a given (quenched) distribution of magnetic
fields, we expand all thermodynamic functions in
a perturbation expansion in both u and h(k), and
then average over all random-field configurations.
Following %ilson, ' we now study the most diver-
gent terms in this expansion, and fit them to
scaling predictions. It turns out" that the small
expansion variable is now uA (instead of u). For
the e expansion (e = 6- d) this is fixed at a criti-
cal value (&)„sothat scaling is obeyed, by con-
sidering the four-point correlation function. '
Since we use a diagramatic expansion, and not
renormalization-group recursion relations, we
do not have to worry about higher-order vertices
or other irrelevant variables. '

Diagrammatically, each four-spin interaction
is represented by a vertex, while each factor
h(k) is represented by an "external" line in the
diagram, ending at a point which has the variable
h(k) attached to it. Upon averaging, the only re-
maining nonvanishing diagrams will be those in
which pairs of these "field" lines meet, each
creating an internal line with tuo propagators
and with an "empty circle, " denoting the variable
A. , on its middle. Figure 1 shows some examples
of diagrams which mill appear in the perturbation
expansions of the free energy and of the spin-
spin correlation function. The most divergent

diagrams will now be those which arise from
treelike diagrams, on which each external line
involves the field variable h(k). On averaging
over the field configurations, pairs of field lines
will meet, and the resulting diagrams will be
similar to those of the nonrandom pxoblem, ex-
cept that now each loop zoill have exactly one
"circled" internal line (see Fig. 1). Any nontree-
like diagram will have loops with no circled
lines, thus will involve less propagators, and
therefore will be less divergent. Loops with
more circled lines arise from disconnected dia-
grams, which should not be included.

%e next compare the results for pure diagrams
with those for circled ones. The latter involve
the effects of the random field, while the former
involve those of thermaE disorder, or entropy.
Since the circled diagrams are more divergent,
one concludes that in the present problem ther-
mal disorder is much less relevant than in the
pure pxoblem. %e shall discuss this further be-
low. Our basic result is that each circEed loop
integml in dis simply to be replaced by its pure
counterpart in d -Z dimensions, apart from a
multi piicative factor (47ik). This can be absorbed
in the appropriate volume factor K„„'and thus
will not affect critical exponents. It may, how-
ever, affect universal amplitude combinations
which depend on K, , ' Since the free energy is
also given by a diagrammatic expansion [e.g.,
Fig. 1(a)], the power dv which appears in it will
also be replaced by (d-2)v.

The main part of the proof concerns a single
loop, with l internal lines (Fig. 2). Without the
random field, there are no empty circles on any
of the internal lines, and the loop integral is giv-
en by'

l, '(q, , r, ) =(2v) 'fd't g [r, +(k+q, )'] '

if l

={l—1)!(271) ~fd'k f dQ, . .f 'do.',.5(g & —1)[k'+g n, (rJ+q ')] '.
j-1 j=l

We have exploited the arbitrariness in choosing the momenta of the lines as (k+q~), so that Q~ n,q~
=0.' To obtain the contribution of the same loop to the random-field problem, we have to circle one
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of the internal lines, multiply by A., and sum over all possible circlings. This yields

ly the effect
ritical behavior

y use the Pip-
pard demonstration of hypersealing, as quoted by
Kadanoff. ' It is assumed that the characteristic
fluctuation energy of a coherence volume, t' "]',
is of the same order of magnitude as [(nE„)']'~'.
To evaluate the latter quantity, one may note that
at each coherence domain the spins are slightly
disturbed by the excess random field, which is of
order $

~~'. Thus one may write [for a typical
value of (c(0))] ( c( 0))- f &$ ~~ and thus [(~„)']'~'
-Xt &. This result ean also be obtained by sum-
ming the energy for each k component, X(k)
&& [ k( k)'], over

~
k

~

& 1/$ and dividing by the number
of coherence volumes in the system, V$ '. If the
small critical index q is now neglected in this
heuristic argument, one obtains f' "$'-).$', i.e.,
2- n = v(d -2). Note again that the physical rea-
son for the change in the "effective dimension-
ality" is that the disordering energy for a coher-
ence volume is not of O(1), but proportional to a
positive power (presumably 2) of the coherence
length! We have no explanation for the fact that

q must be neglected in order to reproduce the
diagrammatic result. Moreover, it is interesting
to note that if q is kept, then d is replaced by d
—2+/» instead of ll —2. For tl = 1» 0 = 1» ODe hRS

q =1. CouM this explain the shift in d„by 1, in-
stead of 2, for the Ising case'P %e leave these
intriguing questions for future study.

To obtain results for ~=1, a'=3, we must use
the e expansion with e =3, or the 1/n expansion
with I/n= 1. These values are very probably out
of the radii of convergence of the appropriate se-
ries. The question of the violation of hyperscal-
ing for this case thus remains open. Similarly,
it is not yet clear if the behavior of the random
continuously symmetric system in 0 =4 + 6 dimen
sions is the same as that of its pure counterpart
in d =2+ e dimensions. '

Another heuristic approach to critical phenome-
na of Ising systems was recently proposed by
Thompson. ' His basic assumption is, that all
the three first terms in Eq. (1), for a volume I.",
are separately of order 1. For such a volume,
the new fourth term in (1) is of order' z'~'L' 'M.
Since, from pertuI'bation theory, the variable uA.

replaces u everywhere, ' it is reasonable to re-

Consider now a diagram with many loops. Hav-

ing proved (5) for one loop, we next consider
another loop. If the two loops have common lines,
then me consider only those configurations of the
circled diagrams for which these lines were not
circled during the calculation of the first loop in-
tegral. For these we now repeat the calculation.
In intermediate steps, the momenta q,. have d
con1poDents, Rnd not 4 - 2 components, Rs seen1s
to be required by the right-hand side of (5). How-

ever, I, ~ ' is actually a function only of the com-
bination (r, +q,.'), where q,

' may be treated as a
numerical parameter. After finishing all the loop
integrals, the result mill be a function of the ex-
ternal momenta only. As long as there are no
more thRD 0 —2 of such momentR we cRD RlwRys

choose them to be in the (d-2)-dimensional sub-
space on which I, ' is defined. In practice, for
d&4, this will be sufficient for calculating all the
necessary exponents.

There are various possible generalizations of
the present study. For one, one may consider
long-range correlations in the random fieM, so
that f(k)~k for k-0 in Eq. (2).' This will intro-
duce an additional power of

~
k+q,.

~

e into the inte-
grals in Eq. (4), and thus lower the values of d,
and d~, presumably by 8. It is not clear yet if
this shift in dimensionality will apply to all expo-
nents, to all orders.

The physical reason for the effective lowering
of d ha, s to do with the fact that sufficiently close
to T, the random field becomes the dominant
cause for disorder. In fact, the average of the
square of the energy due to the random field, for
a coherence volume $', is

Here the angular brackets denote the statistical
average a,t a given random-field configuration.
If this is used in the Ginzburg' criterion for the
critical region, one ea,sily finds that the dimen-
sion where cia.ssieal behavior is valid is indeed
d& 6, and that the effective coherence volume is
(d-2

I, '(q, , y, )=- P X ' =Xl!(2w) 'fd'kf dn, .. .f dn, 5(ga,. -l)[k +gn, (y,.+q, ')] ' '
i=& i j

We now divide the momentum k into two parts,
k, with d —2 components and k, with two compo- In order to understand qualitative

nents. Integration over k, and comparison with of this disordering energy on the c
(3) immediately yield the result and the hyperscaling laws, ' one ma
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place Thompson's assumption concerning the
third term in (1) by the assumption that only its
product with the square of the last term is of or-
der unity. Following Thompson's other steps this
immediately yields v =-,' for d& 6, and v =(0+2)/
4{d—2) for d& 6. Note that his yields v- ~ as v

—d, =2, in agreement with the heuristic predic-
tions of Ref. 1 (this assumption was not fed into
the theory here!). The e expansion of this result
near d = 6 is not identical with that of the pure
case near d =4, but thi. s is probably not to be ex-
pected {it breaks down at order e' for the pure
case"). It is interesting to note that this approx-
imation gives v=-' at d=3, instead of v=-' for
the pure system!" Since d =3 is much c1oser to
d„ in the random case, one would expect a much
larger deviation from mean field, compared to
the pure case, even if the Thompson-like esti-
mate is not very accurate. Thus, experimental
(e.g., on displacive or charge-density-wave tran-
sitions, with randomly frozen impurities or
charges), numerical (e.g. , with use of Monte
Carlo technic(ues) and further theoretical investi-
gations of this case are extremely interesting.
We note that the model discussed here is also
equivalent to some spin-glasses, in uniform
magnetic fields. "
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ERRATA

PBIMORDIAL SUPEBHEAVV ELEMENT 126.
C. Y. Wong [Phys. Rev. Lett. 37, 664 (1976)].

Page 665, second column, twenth line: "=2.26"
should read "=2.66 MeV." Page 666, first col-
umn, twelfth line: "both the neutron and the pro-
ton" should read '

the proton. "

ETCH INDUCTION TIME IN CELLULOSE NI-
TBATE TRACK DETECTORS. F. H. Buddy,
H. B. Knowles, and G. E. Tripard [Phys. Rev.
Lett. 37, 826 (1976)].

The first sentence in the second paragraph in
the second column on page 828 should read: It is
remarkable tha. t, to a first approximation, the
surface effect produced by these heavy ions as
they enter CN films appears to depend on [{dE/
dx)~, ~,]/Z* which thus depends only on the first
power of the effective charge, Z*.


