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cussion of this problem is premature.
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Spin-Flip Raman Echo in n-Type CdS
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(Received 12 October 1976)

We report on. the first observation of a Raman echo, using spin-flip Raman scattering at
4905 A of bound donors in CdS to create a coherent spin state. The free-induction decays
associated with each pulse in the sequence of two r/2 pulses as well as the echo are probed
by spin-flip Raman scattering at 4880 A.

A powerful tool for studying the microscopic or
irreversible phase memory time of any two-level
system is the class of well-known spin' and pho-
ton echo experiments. ' Since it has been demon-
strated very early that coherent states can be
prepared by stimulated Haman scattering or two-
wave mixing, ' it is to be concluded that an echo
signal can be generated by either of these proc-
esses and is called a Raman echo. ' However,
while various other coherent phenomena involv-
ing two-photon process have recently been dern-
onstrated, ' we report here the first observation
of a Raman echo.

Spontaneous' and stimulated' spin-flip scatter-
ing were first observed in InSb and later in CdS.'
For bvo time-reversed states la) and ib) [see
Fig. 1(a)] split in a magnetic field along z by k&u„
and for cubic symmetry, ' the effective spin-flip
Hamiltonian H+(~) was first given by Yafet as" "

z no '(E~ x E„)()
x exp[i(&ul. —&uR)t —(k~ —kq) r]+c.c, (1)

where E& is the la.ser field and ER the Ba,man
field with angular frequencies ~I. ,R and wave
vectors k&, kR, respectively; 0 are the Pauli ma-
trices; r is the position vector of the impurity in

the crystal; and & is related to the spontaneous
differential Raman cross section do/dQ by" dv/
dQ =4!n I2(&u~ +&a„)'~~/c'. n becomes very large
when ~~1. is near-resonant to an excited state,
which is the exciton bound to a neutral donor in
our case. ' Since in Eq. (1), n(E~ x Eq) exp[i(vz,
—~R)t] acts as an effective resonant rf magnetic
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FIG. 1. (a) Energy levels in a Raman echo experi-
ment. The excited state here is an exciton bound to a
neutral donor. (b) The excitation pulse sequence of the
dye laser. (c) The argon probe timing. (d) Expected be-
havior of 4880-A Stokes free-induction Rnd echo signals.
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field with & —R =~„,' it generates a coherent
transverse magnetization ~ &0~ which may be cal-
culated using the standard magnetic resonance ex-
pressions and is given by

ar = sin8 cos[(k~ —kR) «r], (2)

where 6 is the "tipping angle" given by

8 = a@ (& /&z, )(d+/d~)4go5 (+a+I)(+f).

&t is the duration of the light pulse a,nd vl + ~„
While strong stimulated Stokes-Baman

scattering at ~R was observed by us in several
CdS samples, for production of maximum coher-
ence in the spins it was advantageous to make use
of two-wave mixing by introduction of an addition-
al (d R excitation present simultaneously in the
4905-A dye laser along with (dr. .

The coherence or o~ is examined by the inten-
sity of Stokes and anti-Stokes coherent forward

0
scattering from a, probing 4880-A a,rgon la,ser
beam. The conversion efficiency is given by"

P, 1 do ~'q'1. '
P 16 dQ

(4)

where P, is the sideband intensity and P, that of
the 4880-A probe. A, is the free space wavelength;
c, the dielectric constant; L, the sample thick-
ness; and g, impurity concentration times the ap-
propriate spin Boltzmann factor which is 0.45.
The phase matching factor I =2(1 —cos&k L)/
(bk I.)' where bk =(k~ —kR) —(k~~ —kR~) and k~~

and k R are the wave vectors of the probe beam
and its associated Baman sideband, respectively.
In our case, I is of order unity.

The spin coherence is generated by a 5-ns dye-
laser pulse of 100-W peak power operating simul-
taneously in two longitudinal modes (dL, and ~ R

where ~& —&R =32 GHz. The spectral width of
each mode is approximately 1.5 GHz. To achieve
the sequence of pulses I and II shown in Fig 1(b), .
the dye-laser output is split into two and then re-
combined collinearly after one of them is delayed
by a time, 7, in an optical delay line. A single-
mode, cavity-dumped, 4880-A argon la,ser pro-
vides a 100-mW peak power, 30-ns beam which
can be electronically set to probe v~ at any time,
f, relative to the dye-laser pulse I [Fig. 1(c)].
The 4880- and 4905-A beams are made collinear
and focused by a. 10-cm lens to a diameter of 100
pm. The sample is 0.5-mm thick and has an un-
compensated donor concentration of - 8 X 10"/cm'.
It is cooled to 1.6 K; and an externally applied
12.75-kG ma, gnetic field, perpendicular to c,

tunes the Zeeman splitting of the spins to be res-
onant with ~~ —~R. The probed signal (4880-A
Stokes line) is observed in the forward direction
through a triple-pass Fabry-Perot interferometer

0 0

in series with two 10-A-bandwidth 4880-A inter-
ference filters and detected with a phototube. The
output of the phototube is fed into a boxcar fol-
lowed by a multichannel analyzer for signal aver-
ag1ng.

For the observation. of free induction, the argon
probe was set coincident with either dye-laser
pulses I or II [Figs. 1(b) and 1(c)]. The scattered
Stokes and anti-Stokes intensities were of com-
parable magnitude and proportional to the probing
4880-A beam intensity. In Fig. 2 we show the
Stokes free-induction signal intensity as a func-
tion of the 4905-A excitation intensity. It is seen
that after a rapid initial increase, the signal satu-
rates and at this point corresponds to about 10%
conversion efficiency. The inset in Fig. 2 shows
the temporal behavior of the free-induction decay
observed with high-speed BCA 1P21 tube. The
decay time is of the order of 3 ns which would
correspond to an EPB linewidth of -22 G.

In calculating 0 from Eq. (8) (which applies only
to an ideally coherent light pulse), modification
is necessary in order to take account of the 1.5-
GHz spectral width of the dye-laser pulse which
is much larger than 1/&t. We only summarize
the main results here. For small tipping angles,
Eq. (8) is modified only to the extent that the ef-
fective intensity is reduced by a factor of 5. For
large tipping angles, the analysis predicts that
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FIG. 2. Ratio of free induction signal to probing light
intensity as a function of dye-laser intensity. Dashed
curve indicates the initial ~ dependence.
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the maximum average tipping angle is ~ - &&.

Therefore, with F.R-EJ., the free-induction de-
cay signal should initially be proportional to the
square of the dye-laser intensity and saturate (9
=~&) at 1.3x10' W/cm', taking At =5 ns, e =9,
and (do/d&), », -2x10 "." These predictions are
in reasonable agreement with experimental re-
sults shown in Fig. 2. The maximum conversion
efficiency calculated from Eq. (4) with I. =0.05
cm, (do/d&)«»-10 "cm', "and q =Bx10"x0.45,
is 18%, taking into account a factor of 3 due to the
Gaussian distribution of beam intensity. This is
in good agreement m'ith the experimental values
of 10%, considering the factors-of-2 uncertainty
in concentration, cross section, and imperfect
phase matching.

We now turn our attention to the Baman echo.
In addition to its dependence on w which provides
a direct measurement of the microscopic dephas-
ing time, it also depends upon the strength of the
excitation pulses and is given by the familiar ex-
pression"

or'(I = 2m) ~ sin'8) sin'(9„/2),

where 6~, OI~ are the tipping angles produced by
pulses I and II, respectively. The free-induction
signals from either pulses I or II alone with the
other cutoff are of the same magnitude and each
corresponds to 10% sideband conversion of the
probing beam. With both pulses applied and for
an ideal sequence of m/2 pulses, the free-induc-
tion signal associated with pulse II should be
zero' and the echo should be ~ of the intensity of
the free-induction signal from pulse I as seen
from Eq. (5). While the observed free-induction
signal associated with pulse II was not zero, it
ma, s nonetheless a factor of 10 smaller than that
of pulse I as illustrated schematically in Fig. 1(d).
The two dye-laser pulses and the echo signal for
7 = 54 ns (obtained with the center of the 30-ns-
side 4880-A probing beam set at t =2m) a,re shown
in Figs. 3(a) and 3(b), respectively. A very small
amount of direct dye-laser fluorescence in the re-
gion of 4880 A can still be observed which conven-
iently served as time markers. The rise and de-
cay times shown in Figs. 3(a) and 3(b) are those
of the high-gain RCA 8850 photomultiplier which,
while slower than the BCA 1P21, has a higher
sensitivity suitable for observing the echo. No
echo was observed with either pulse I or II blocked
as expected. Furthermore, we are able to set an
upper limit of 1 part in 10' on any spurious reflec-
tion of the dye laser at t =2~. The free-induction
signal produced by such spurious reflections, if
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any, would be several orders of magnitude below
the observed echo. The echo signal is a fa.ctor of
80 smaller than the free-induction signal associ-
ated mith pulse I. This loss of a factor of 20 from
the ideal case is likely due to either slight mis-
alignment in optics or ~~q being somewhat less
than ~/2 (a fac "or of 2 off in BI I reduces the echo
signal by a factor of 50).

A Fabry-Perot interferometer scan of the fre-
quency spectrum of the echo is shown in Figs.
3(c) and 3(d). In this particular instance there
are two longitudinal modes in the 4880-A probing
light with a separation of 10 GHz and an intensity
ratio of 40:1. As expected, the 4880-A Stokes
and anti-Stokes echo now also consists of two fre-
quencies 10 0Hz apart and mith the same 40:1 in-
tensity ratio. (The anti-Stokes line is weaker be-
cause of phase mismatching details. ) This linear-
ity again confirms that our probe beam intensity
wa, s always low enough to avoid stimulated emis-
sion. Echoes have been observed for v up to 162
ns for this dilute sample (8x10"/cm'). No echo
could be observed in a higher-concentration sam-
ple (7x10"/cm'), indicating rapid shortening of
pha, se memory at higher concentra. tion. Details
of the phase memory measurements in CdS will
be published later.

FIG. B. (a) Dye-laser pulses separated by 7 = 54 ns.
(b) Dye-laser leakage and the 4880-A Stokes echo signal
at & =2&. (c) Frequency spectrum of probe and echo.
The Stokes and anti-Stokes echoes are, respectively,
from consecutive orders of the scanning Fabry-Perot
(F-P) interferometer. These F-P orders are indicated
by off scale laser probe appearing on each end of the
figure. See text for explanation of doubling of Stokes
and anti-Stokes. (d) Same as (c), except 5 x gain on ver-
tical scale.
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Trap-Controlled Dispersive Hopping Transport
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The transition from transient trap-controlled hopping among traps has been observed
in a polymer matrix doped with two transport molecules of different ionization potential.
The nonequilibrium properties of the transport, characteristic of the disordered molecu-
lar state, are manifested by an apparent concentration-dependent trap depth.

The modulation of the microscopic charge trans-
port through extended states by interaction with
energetically shallow traps results in a trap-con-
trolled drift mobility measured by the time-of-
flight technique. A good example for an inorganic
solid is the case of electron transport in CdS
crystals. ' This transport mechanism is charac-
terized by the existence of thermal equilibrium
in occupancy between extended states and shallow
traps which is established in a time much shorter
than the transit time t~. Under these conditions
the injected sheet of excess charge is said to
move "coherently, " since on the average the car-
riers experience the same large number of trap-
ping events such that the relative dispersion of
the propagating carrier sheet can be described
with Gaussian statistics. Trap-controlled drift
mobilities have also been measured in doped mol-
ecular crystals. ' In this case, however, ques-
tions remain about the precise nature of the mi-

croscopic mobility in the ordered molecular state
since the validity of a band picture is seriously in
question.

Recent time-of-flight studies in molecularly
doped polymers have provided firm evidence of
an alternative microscopic mobility process.
The ability to study charge transport as a func-
tion of the dopant molecule concentration allowed
a clear identification of the mechanism as one in-
volving the hopping of charge carriers within a
random array of molecules. '' This is consistent
with the complete breakdown of a band picture in
the disordered molecular state leaving hopping
as the only possible process for the microscopic
mobility in such systems. The dynamics of tran-
sient transport in disordered materials such as
these are determined by stochastic processes and
general agreement exists between experimental
observation and recent theoretical work by Scher
and Montroll. ' The central point of this theory is






