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The strorg-signal regime of a free-electron laser is analyzed in terms of a set of
"generalized Bloch equations. " We show that for current free-electron-laser configura-
tions the saturation will be reached for a fieM on the order of 10 V/m, with an efficien-
cy at saturation of 5x 10 . However, a strong reshaping of the electron distribution
may alter the efficiency of free-electron lasers in cases where the electron beam is re-
cycled from one shot to the next.

Recently, a considerable effort has been made
toward the realization of a free-electron laser.
Elias et al. ' have passed a relativistic electron
beam (E =@me' ~24 MeV) through a helical static
magnetic field, and have observed stimula. ted
scattering at 10.6 pm. On the theoretical side, a.

number of authors' ' have computed the small-
signal gain of this laser, and there is now gener-
al agreement on the functional form as well as
the numerical value of the gain. In order to as-
sess the potential of any practical laser device,
it is necessary to comprement the small-signal
theory by an analysis of the mechanisms of satu-
ration. In the present case, we do not need a
quantum theory. ' In fact, the quantum theory of
a free-electron laser is extremely tedious, and
neither desixawe nor necessary.

In this Letter, we present the strong-signal
theory of a free-electron laser. Our analysis is
completely classica1 and relies on the coupling of
Ma.xwell's equations to the relativistic collision-
less Boltzmann equation. ' We use the Weizsa, ck-
er-%'illiams approximation, which allows us to
simulate the static magnetic field of period A. , by
a fictious incident electromagnetic field of wave-
length A, = (1 + v/c)A, =2k„propagating in the op-

posite direction of the electron beam. We then
express the problem in terms of a set of general-
ized Bloch equations coupled to Maxwell's equa-
tions.

Following the derivation of Ref. 5, we find that
the coupled Maxwell-Boltzmann equations can be
reduced to the set of equations
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where I. is the length of the cavity.
Az is the vector potential that we take to be of

Here, the electrons have been taken to be injected
inside the cavity along the z axis. p, =ymv, is the
z component of the electron momentum, and y
=[i+(P,/mc)']'". The filling factor 7 is the ra-
tio of the section &a2 of the electron beam to the
section of the cavity. h(z, p t) is the longitudinal
part of the Boltzmann distribution function and is
related to the electron number N(t) inside the
cavity by

N(t) = ~a'J dp, J,~dz h(z, p„ t),
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&R,/& t+ iPR, = —sR, /sd',

sR, /sg -~PR, = 0,

&R,/sf = —&R, /&(P,

subject to the boundary conditions

R,(0, (P) =R,(0, (P) = 0,

(6a)

(Bb}

(6c)

the form

A, =e &A;em[-i(~;t+~p)1

+ A,(t) exp[-i((u, t -k,z) j ), + c.c., (4)

where i and s refer to the incident and scattered
modes, respectively, and

e, = (i ~ iy) /~2.

To obtain the small-signal gain, we expanded
h(z, p„ t) in powers of,~A &,~, and kept terms
only up to first order. It would be tempting to ex-
pand to higher orders to compute the saturation,
keeping, for example, terms up to third order in
the field strength as in the usual procedures of
laser theory. However, this perturbative expan-
sion diverges. To approach the strong-signal
theory, it is necessary to use some other expan-
sion for h(z, p t), such that each term contains
the saturation to al. l orders in the field.

To this end, we express h(z, p„ t) as the har-
monic expansion

h(z, p„ t) =n(z, p„ t)

+Q (ig e ™~~'z') + c.c.), (5)
m=1

where K=K, +k, and hu = a, -u,
Keeping only terms up to m = 1 in expansion (5),

we find that the Boltzmann equation (2) can be re-
expressed as the generalized Bloch equations

no field is present. The scaling coefficients
serve to eliminate all explicit field dependence
from Eqs. (6). The dimensionless variable |P is
related to the detuning

p. = 6&/ "Ug -K,

of the laser cavity from the condition of exact
momentum conservation. " In the region of inter-
est -2v p, L -2v, 5' can be approximated by the
leading term of a Taylor expansion. We express
it in terms of a scale length I as

(12)

The dimensionless length f is expressed in terms
of the scale length I as

g =z/t.

We will discuss the meaning of the length l
= mcy, 'P, /2"'eK(A P,)

'" later. Before doing this,
let: us note that the set of equations (6) presents a
striking resemblance to the optical Bloch equa-
tions, ' where 8, would be the population inver-
sion, and A, the polarization. However, it differs
from them in two respects. First, the signs on
the right-hand side of Eqs. (6a) and (Bc) are op-
posite in the optical Bloch equations; and second,
the right-hand side of the Bloch equations con-
tains A, and R„rather than their derivatives.
This difference in structure lies in the fact that
in a free-electron laser, the gain is not propor-
tional to the electron distribution function. It is
its derivative with respect to p, (rather than the
gain itself) which plays the role of an inversion. '

In the small-cavity limit, the gain is then given
in terms of the maximum small-signal gai.n' g
as

R,(0, tP) prescribed by the initial

electron momentum distribution.

g(A, , A„po, L)

=gmax(A p&&, I )S(A;, A, p&, I }, (14)

R, = (mc W2/4n, oP,y,)(g, +g, *),

R,, = -i(me&2/4n, oP,y,}(g,-g, a),

R, = (mc/2n, oP,y,)n,

(Ba)

(Bb)
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o = mc/4u 2y,'P, 'e'Ar4

P, =(1-1/y, ')"'= ~~/Zc. (10)

n, is the electron density inside the cavity when

R,(g, (P) are dimensionless functions that are re-
lated to n and g, through

where the saturation function b is the double inte-
gral

t'(A, , A„p„1.)

,' ~'(I/L)'f, dt) dt R,(t, 6), (15)

where p, is the initial electron momentum.
In Fig. 1, we present a numerical computation

of the saturation function S as a function of pl.
and W(R= (v 2/~')(L/I)'. This figure was computed
in the experimentally relevant limit in which pI-
is much larger than . the initial width of R, ("small-
cavity" limit). The vertical axis corresponds to
the small-signal regime (W(R=0), and is in agree-
ment with the results of Ref. 5. The working
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is excited coherently by the electron beam.
It follows that the maximum field extractable

from a free-electron laser (i.e. , the output field
when the laser is in the saturation regime) is

Flo. 1. Plot of the equisaturation curves 3 =constant
as a function of ~@ and —pL. The curves are labeled
with their value of 8=0.95, 0.9, 0.7, and 0.5. These
results were obtained in the small cavity limit, and the
ratio of the electron momentum distribution width to
the cavity bandwidth was taken to be 1j20.

point of the free-electron laser should be chosen
to be about pI. =-m, and for this value 8 reaches
the value 0.5 for v (R =g.

The numerical results demonstrate that our
scaling coefficient correctly describes the satu-
ration by the requirement R-1 or 1 -I.. We would
like to derive l (to within numerical fa.ctors) by a
heuristic argument that will serve to make con-
nection with the physics of the saturation„using
the scaling relations of ordinary lasers.

Let us suppose that the mechanism of satura-
tion is a deceleration of the electrons through the
gain line to the point of zero gain. The maximum
amount of energy ~ that a single electron can
transfer to the field is

where A. , is the wa. velength of the scattered light.
In the limit that the scattered flux S, becomes
large, the gain is limited by the maximum ener-
gy flux S,„available from the electron beam per
unit time:

(17)

Defining as usual the saturation flux S„,as the
ratio of S,„ to the maximum small signal gain

g max~

S sat = Sex/gm ax ~

we find that the scale length l is related to the
saturation flux through the relation

(19)

The left-hand side of Eq. (19) is precisely the
parameter W(R used in the numerical computation,
and is equal to 1 for S,=S„,. We note that the
right-hand side of Eq. (19) is (S,/S», )"', rather
than S,/S„, . This is due to the fact that the field

With use of the numerical values of the Stanford
experiment, Eq. (20) gives a maximum extract-
able field on the order of E„„„„=10V/m (i.e„
S„,-10 %/cm ) for a static magnetic field of 2.4
kG. The efficiency at saturation is q„,= (A,/L) y.

and is on the order of 5&20 in this case. This
implies that free electr-on lasers have the poten
tll to uoxk at high Ponce, but they must be op-
erated in a pulsed mode, with small per shot ef-
ficiency. In this context, it is important to as-
sess the possibility of recycling the electron bea, m
from one shot to the next. There would not be any
difficulty in doing that if the only mechanism of
saturation was an electron deceleration through
the gain line, as assumed earlier in this Letter.
However, we want to emphasize that although this
assumption gives a correct estimate of the satur-
ation, it is by no means the unique way of under-
standing it. In reality, a more detailed analysis
shows that a major contribution to the saturation
is a strong alteration of the electron distribution
such that the laser eventually reaches the large-
cavity limit. This reshaping will be analyzed in
detail in a later publication in order to give an es-
timate of the efficiency of a free-electron laser.

In the present analysis we have considered only
the terms up to first harmonics in the expansion
of h(z, p„ t). For each supplementary term kept
in Eq. (5), the set of equations (6) is increased by
two new equations, and the problem becomes very
complicated very fast. We have checked numer-
ically the contribution of the second harmonics,
and have found that their effect on the saturation
function 8 was less than 10% for the region of
practical interest.

The advantage of the free-electron laser, as
compared to other presently existing light sourc-
es, lies essentially in the fact that they are in
principle tunable continuously over an extremely
large spectral range (from the far ir to at lea. st
the soft uv), simply by changing the energy of the
electron beam. In this Letter, we have demon-
strated that they also have the potential to work
at high power. Although further efficiency studies
will be necessary in order to assess their large-
scale applications, free-electron lasers seem at
the present time to be an attractive alternative to
conventional lasers.
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A detailed presentation of these results, as well
as analytical solutions for some limiting cases,
will be presented elsewhere.
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The low-frequency density fluctuations observed in an ohmically heated toroidal plasma
are found to be consistent with a spectrum of electrostatic drift modes which can account
for the measured anomalous particle loss rate.

It is now generally accepted that, at least in low

P, long-mean-free-path plasma, , there is likely
to be a significant contribution to the cross-field
transport of toroidally confined plasma due to the
presence of low-frequency (~ «co .) long-wave-
length (k&o «1) electrostatic modes, and experi-
mental studies on tokamaks' are just beginning.
This contribution can conveniently be expressed'
in the form of a diffusion coefficient

D, -Q-„[T(k)] '[ck,q&(k)/(o(k)B]',

where ~(k) is the correlation time for fluctuations
with frequency ~(k) and amplitude y(k). Whatever
their origin, these modes will have the nature of
drift waves with k» k ~, , &u

- &u* = k ~ e~ = (k,/f, „)
x (cT/eB).

The relation between such fluctuations, plasma
confinement, and, for example, current density
can in principle be studied in any toroidal-confine-
ment experiment; in practice, however, for a
tokamak the situation is generally complicated by
magnetohydrodynamic (MHD) activity (which
causes turbulent effects of a different kind and

may confuse the measurements) due to the exis-
tence of rational magnetic surfaces, while the
plasma parameters in the more elegant conduct-
ing ring devies (levitron, multipoles) are usually
not typical of larger toroidal devices and the or-
dering of the magnetic field components is diffeI-

ent. '
This problem can be largely overcome by using

a stellarator with large vacuum rotational trans-
form to define the confining field so that one can
vary plasma conditions appreciably with an ohmic
heating current either so small that the magnetic
configuration, at least to first order, is un-
changed, or, where this is not possible, so cho-
sen as to avoid obvious MHD instability. In this
Letter, we report the results of some observa-
tions using this approach which demonstrates the
relationship between plasma confinement, drift-
wave-like density fluctuations, and electron-
drift/thermal velocity ratio $.

The experiment was performed in TORSO (de-
scribed in detail elsewhere ) in which closed mag-
netic surfaces are produced entirely by currents
in a single set of unipolar helical windings (the
"ultimate torsatron configuration"). The plasma
is produced an heated by a longitudinal discharge
(I-1—10 kA, 1- 5 ms) controlled by making
small (approximately a few percent), slow chang-
es in the quasi-steady confinig field. Experi-
ments were made with mean fields in the range
4-j.o ko. The plasma boundary was defined only
by the magnetic separatrix, with no material lim-
iter or other object in contact with the plasma,
and had peak and mean parameters (as indicated
by a caret and a bar, respectively) 2xl0" ~n


