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the measured ratio C/A versus Q'. The solid
curves display the dispersion-theory prediction
for C/A using F„=(1+pa/0. 471) ' and the value of
C/A calculated using the dispersion-theory pre-
diction for C together with the expression (0.025
sr ')o~, for A. The transverse component be-
comes increasingly important as Q' increases.

In conclusion, we have observed that the cross
section for the reaction y„+P-p'+n has a strong
dependence on e indicating a substantial scalar
component. The dispersion theory used to ana-
lyze the data in terms of the pion form factor'
substantially underestimates the contribution of
transverse photons at large values of Q'. The
transverse cross section has a. much weaker Q'

dependence than that predicted by the dispersion
theory and it is compatible with being the same
as that found for the virtual-photon-proton total
cross section.

It is known from previous measurements'' that
the cross section for single-pion electroproduc-
tion has a significant isoscalar component which
for fixed W increases with Q'. The dispersion
theory assumes that there is no isoscalar compo-
nent. The isoscalar component could be contained
entirely in the transverse component of the cross
section and thus its neglect could partially ac-
count for the failure of the dispersion theory to
reproduce the observed transverse component.

The data. reported here imply that the previous
determinations of the pion form factor using dis-
persion theory are overestimates. The redeter-
mination of the pion form factor and the further
analysis of the transverse component will be the
subject of a later communication.
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A relativistic three-body theory of the (2') MVw system was applied to calculate elastic
and inelastic ( B,) pp scattering below 1 GeV. Although the amplitude satisfies all stan-
dard resonance criteria, it has no pole corresponding to a diproton resonance.

The spectrum of elementary "particles" pro- gand plot (left-hand circle, "speed" maximizing
vides the chief test of strong interaction dynam- near the resonance energy), although these cri-
ics. It is therefore critical that resonant phe- teria are not always applied objectively (e.g. , the
nomena be correctly analyzed and interpreted, Z* controversy'). Moreover, these criteria are
i.e. , that peaks in mass spectra be properly iden- primarily motivated by simple examples drarvn
tified with poles of the S matrix. As noted by from (multichannel) two-body scattering. Thus,
Trippe et al. , presently acceptable criteria. are a considerable majority of tabulated inelastic
almost uniquely linked to the behavior of the Ar- resonances have been analyzed on the basis of a,



Voz. UMF. 37, NUMar:R 20 P H Y S I C A L R K V I F. O' I. E T T K R S 15 NovI'. M@FR 19j6

rather crude analogy (related to the isobar model)
in which the actual multiparticle structure is en-
tirely suppressed. Paradoxically, this raises the
possibility that we are Brbitx'ating fundamental
theories on the basis of criteria whose signifi-
cance is equally in doubt.

Unfortunately, past and present work by this
author suggests that multibody effects are not at
all negligible in many cases. Recently I showed
that the competition of overlapping quasi-two-
body channels in theA, 3II system (pII vs e&) can
lead to a true resonance pole on the second sheet,
despite the absence of rapid phase behavior usual-
ly associated with such a state. ' The present Let-
ter is motivated by a new and more disturbing re-
sult. I show, via a covariant three-body treat-
ment of the (2') NNII system, that the elastic pp
and &'D amplitudes satisfy the above criteria for
a resonance near the &4 threshold, seithout an
associated S-matrix pole. Together, these re-
sults imply that the accepted resonance criteria
axe neither necessary nor sufficient in the pres-
ence of n-body effects. '

Aside from the general significance of this re-
sult, there is also considerable intex'est in this
particular NN& system. Thus, the question of a

diproton resonance" in the 'D, state has been
xaised repeatedly by a number of authors. 4 In
particular, Suzuki recently applied a very so-
phisticated N/D technique to this problem and
concluded that resonant behavior is "inevitable. "
Moreover, this state dominates ~D scattering
throughout the "resonance" region, and is vital
to a better understanding of pion dynamics. In
this context, a three-body txeatment possesses
an immense advantage because pion production
3nd NN dynamics are described simultaneously
by the same theoretical framework. Although
pxactical relativistic treatments of the Faddeev
type require a very specific (separable) form for
the off-shell &N l matrix, this can be avoided by

employing the quite general boundary condition
formalism (BCF) introduced by this author. "

s noted by AIQado~ a mln1. mal scheme for un

itarizing three-particle amplitudes must take the
form of a one-dlmenslonal integral equation. The
basic idea of the BCF is to isolate the primary
(model-independent) singularities characterizing
the associated kernel, and to treat the (relatively
smooth) remainder phenomenologically. A grea, t
deal of specific information concerning the BCF
is now available in the literature'; to avoid rep-
etition, we restrict details to the application at
hand. However, in this context it should be
st ess d that, lat ' t ally, 't s t l st
as genexal as an arbitrary combination of two-
and three-body potentials. ' Less rigorously, one
may argue that the covariant version employed
here provides an equally comprehensive (effec-
tive) description of meson exchange, and hence
that our conclusions are not specific to the BCF.

To describe a state of three (mass-shell) par-
ticles, we let (+)p be the momentum of particles
P and y in their c.m. frame, and let q be the mo-
mentum of particle n in that frame (u p Pwy). In
a partial-wave decomposition we couple l„(p„)and

T. (q„)by taking j =1 + &, where o„is the total
spin of the Py pair, and forming states of definite
channel spin S~ = s + j~, where s is the spin of
particle a. %e subsequently couple S~, 7. to form
a state of total J. In such a description the physi-
cal states correspond to P, =v„(q„,s), where z
is the or.-shell c.m. momentum defined by the
condition P =s (P ls tile total foui'-lllolllelltulll) ~

Two-particle scattering is described by the on-
shell amplitude t, (K ), awhich is taken as input to
the three-body problem.

However, since w ranges over unphysical val-
ues in our integral equation and t, (~„)will in
genexal possess a left-hand cut, it is useful to
employ the particular representation t„,=N, /
D „„where

NnI(&n) =faI(&a)jI(IIn&n)+~n&ajl+i(un&a)~ D I(& )a=l&nnffaI(&a)~II(~In&a)+&nliAI+i(&n&n)1 ~

This is equivalent to an energy-dependent boundary condition at a characteristic range a =
) rz r&-f,(K ) is essentially the logarithmic derivative, and is taken to be a, meromorphic function of ~ fit-

ted to the data. Here the &X P» and P33 phases were taken fxom Carter, Bugg, and Carter, and the
NN '8, phase from MacGregor, Amdt, and Wright (MAW)'; these correspond to a =0.22, 0.19, and
0.86 fm, respectively. In practice, xa' ranges from a, minimum 7a'=-min(mII', ml') =—II '(Q, s} to its
physical maximum. Below we use N„,' to denote N„,with f,(wa') replaced by f a, (Tc ') —=f„,' (note that
II„-7as q —Q„).

In the present application, we consider three distinct. pair-plus-spectator configurations coupled to
J'~=2', f=l, and labeled by j=l, 2, 3: (1) 'S,(NN)+II(l. =l), (2) P»(IIN)+N(l. =2), (3) P»(IIN)+N(l. =0};
these correspond to the vD, NN, and NA channels, respectively. Antisymmetrizing the nucleon coor-



VOLUME ~7, +UMBER 2~~ PHYSICAL RE VIE%' LETTERS 15 NovEMszR 1976

dinates yields three coupled integral equations of the form

r~~~„(q,) =N, ,(q, , q, ') &, f. dqq, N, „(q,, q,)f„,(.,)X„(q,)IN„, (.,), (2)

where q, ' corresponds to the initial state;
D„,(x,(q„',s)) = 0. Thus, for an initial pp state k
= 2 with the vN pair taken at the nucleon mass (the

P» f matrix explicitly exhibits the nucleon pole, }
Prescriptions for forming physical amplitudes
are identical with those of the Faddeev theory';
e.g. , up to a normalization, X»(q, ') is the elas-
tic pp amplitude.

The function N, , is expressed as N, ,(q, , q~)
=N;, '(q;, q, ) +&;„(q,, q,), where N, ,' is completely
specified by the two-body input in terms of the a,,
f,(x,') parametrization, and contains the primary
three-body singularities. Conversely, A, , is a
smooth, real-valued function which is analytic in
some strip lImq;l( p. , lImq, l

& p, where p is a
mass characteristic of the exchange forces. Thus,
although in general A, , is a complicated functional
of the interaction dynamics, its structure is sup-
pressed in the vicinity of the real q, , q„axes,
and it may be represented by a relatively simple
phenomenological form. In this case I took

A, ,(q, q') =A, ,(s)g,(q)g, (q')N, ., '(x, ') ';

g, (q) =i.,(q&2~,)(I+q'~V, ') ', (2)

with p, , =8ppg„p., = p,, =2m, . This choice embod-
ies the general features deduced in Ref. 7, but is
otherwise arbitrary. However, our purpose here
is not to explore a specific dynamical model, but
to construct a set of unitary, analytic amplitudes
consistent with a plausible dynamics. Thus, ef-
fects corresponding to different choices of g,(q),
more general forms of 4, and neglected channels
were simulated by adjusting the (real) coefficients
A,.„.(s).

As in previous work, the physical amplitudes
connecting the various asymptotic states (pp, &'D,
NN&i) were found to be highly correlated, and
hence all parametrizations which generated (for

0 200
I

5.0—
pp sr+ D

ICI
+ 2.0—

I.O—
Cl

0

400 600 800

+)
~ f —50

2.0

l.O

0.9-
0.7

NN Scotjerinq

0.5

Pu 20

lg

—0.9

—,.0.5

example) the 'D, phase in the elastic region, and
identical values for o'(pp -v'D) at T~ = 375 MeV
and T~ =650 MeV, produced very similar values
of all observables for T~ &900 MeV. It thus suf-
fices to report the results for the choice A»=2A»
= -y/v 5 and A» = 2A» = y (suggested by the proper-
ties of N, „').Here y(s) = cr(W-W, )(W+ W, -2W, ),
where W is the c.m. kinetic energy. Parameter
values for three examples are given in Table I;
corresponding values for the 'D, phase shift, re-
flection parameter (q), and the 2' contribution to
o(pp —v'D) are plotted in Fig. l. Experimental
points for 5('D, ) were taken from the energy-in-
dependent analysis of MAW, ' while points for
o(pp —v'D) were taken from the compilation of
Richard-Serre et al." The theoretical curves
agree very well with the former except at the
highest energies, where the data are relatively
incomplete. With respect to the latter, one must
keep in mind that contributions from other J
states are not entirely negligible. In fact, both
a similar three-body calculation by this author"
and an independent es'imate" indicate that the s-
wave &D channel is sizable, and suggest that the
middle (solid) curve provides the best description

TABLE I. Parameters defining the A operator de-
scribed in the text.

Model

—1.973
-2.389
—2,531

p(8) pal amete1 s
8'0

(fm"')

—0.318
-0.279
—0.304

TV(

(fm-')

0.353
0.329
0.279

0
0 200 400 600 800

(Mev)

FIG. 1. 'D2 phase parameters and o(pp vr+B). The
dashed, solid, and dash-dotted curves correspond to
models 1, 2, and 3 of Table I, respectively. Experi-
mental points shown in the lower (upper) figure were
taken from Ref. 8 (10).
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of the 2' contribution.

Remarkably, the results shown in Fig. 1 bear a
striking resemblance to the very different calcu-
lation of Suzuki' (involving some fourteen fitted
para. meters). In fact, if the A, , parameters a.re
adjusted to sa, turate v(pp —v+D), the resulting
curves for 6 and q are virtually identical to those
of Suzuki (under the same assumption). In this
respect it should be noted that he also fitted o'(pp

N-b); because of the correlations built into the
three-body approach, this channel is automatical-
ly correct once the pp-pp and pp-&'D reactions
are fitted. Similarly, the dominant (P,) mD elas-
tic amplitude is predicted correctly (e.g. , a phase
of 6' at 48 MeV in agreement with the result of
Thomas, ' and differential cross sections at 182
and 234 MeV reported earlier" ).

Suzuki's calculation demonstrates that a quasi-
two-body description is not only appealing physi-
cally, but can (with sufficient finesse) yield cor-
rect physical amplitudes over some domain. How-
ever, the underlying simplification is also reflec-
ted in the analytic structure of the amplitudes.
Thus, Suzuki was led to predict an associated
resonance pole, whereas the present work une-
quivocally does not. &epe~Qe)ebs, both approach-
es yield 'D, Argand plots &which satisfy the reso
nance criteria. " The reason is simply that the
richer singularity structure of the three-body de-
scription permits an alternative, nonresonant,
representation of the amplitude. In the present
case, a resonance pole corresponds to a complex
zero of the Fredholm determinant D(s) =—~1 -K~,
which has a three-body branch point at W = 0 in
addition to the XN, vD, and XA thresholds. Al-
though ImD(s) does vanish near W= 200 MeV,
ReD(s) rises from unity near W= 0 to a maximum
of about 1.6 near W= 182 MeV (the NA threshold).
Explicit ana, lytic continuation via Eq. (2) verifies
that no nearby zero is present. Here it should be
noted that D(s) is quite distinct from the corre-
sponding determinant in Suzuki's work; e.g. , if
we express the ca.lculated amplitudes as T, , =M;,/
D(s), the numerator function M, , ha. s a quite dif-
ferent structure in the two approaches (and is
complex in our case even for a one-channel prob-
lem).

A detailed study of this example (and the corre-
lated rD state) suggests that what the multichan-
nel approa ch misses is the strong energy -depend-
ent mixing of the two inelastic channels; i.e. , at
the three-body level, the &D and XA configura-
tions of the 2'XNv system are remarkably simi-
lar over an extended region for energies s near

the XA threshold. Geometrically, since the deu-
teron is so lightly bound and almost a pure s
state, the p-wave TID state is almost equivalent
to individual vN p waves, and the (avera. ge) spin
and isospin projections of the three particles are
identical. In the Faddeev theory, this "overlap"
would be calculated in terms of bound-state (reso-
nance) form factors for the D(A) systems, folded
over a free three-body pr'opagator. Taken on-
shell, this overlap constitutes the lowest order
contribution to the Xh —TjD transition amplitude,
and is (logarithmically) singular near the NA

threshold. As I noted previously, this rescatter-
ing (or Peierls) singularity dominates vD scatter-
ing and is the origin of what is erroneously called
the (3, 3) "resonance" in nuclei. " Physically, the
rescattering singularity ca.n be visualized in
terms of an almost asymptotic XA —vD transi-
tion via nucleon exchange. " Although present in
each partial wave, the strength of this effect is
dependent on the effective overlap, as is illus-
trated by the dominance of the 2', as compared
to the 1+, TID p wave.

The suggestion, therefore, is that this strongly
s-dependent mixing is shadowed even in the vir-
tual XA and vD states relevant to AX elastic scat-
tering, and is poorly represented by the multi-
channel approach. Although this effect is espe-
cially important in this example due to the small
deuteron binding, it should be noted that the A,
analog (p~ —pv) occurs at Ks =1100 MeV, and
that in the Q system one has both (K*v —K*v) at
1180 MeV, and (K*rr —pK) at 1280 MeV. The im
plication for resonance analysis is clear: It is
essential to employ more sophisticated techniques
which do better justice to the n-body degrees of
freedom, A reliable analysis should thus include
at least the following ingredients: (1) The rescat-
tering terms should be explicitly included; (2) a.

unitary n-body representation of the amplitude
should be constructed in terms of fitting param-
eters which are not themselves strongly s de-
pendent; and (3) the representation should permit
explicit analytic continuation to verify the exist-
ence of a pole. In contrast, phase criteria should
be abandoned.

With regard to NX and vX dynamics, it is worth
noting that the A operator required to modify the
inelastic pp cross section (Fig. 1) effectively al-
ters the Nbl&D overlap; in a Faddeev theory this
would require a modification of the off-shell P»
amplitude. Thus, ine)as)ic pion scattering data
betou the (3, 3) "resonance" should prove particu-
larly valuable in probing this basic interaction
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mechanism. Although all ~D cross sections are
consistently raised (or lowered) by this modifica, —

tion, elastic data at or above resonance are far
less sensitive. "
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The consequences of mixing between SU(4) multiplets of the same J, P, and C are ex-
amined. Within the proposed theoretical framework, the presently available data indi-
cate that there should be substantial mixing between the pseudoscalar multiplets {P and
P') while the vector multiples (V and V' containing (I) and $') remain largely unmixed.
The ratio F&/Fz -2 of the pseudoscalar decay constant leads to the suppression of the de-
cays P q,y and iI' —g,y.

While the SU(4) approach to the charm interpre-
tation of the Z/g family of particles has had both
quantitative and qualitative success, ' ' there
have been several notable problems. They are
the following:

(1) The symmetry-breaking Hamiltonia, n'

X = Uo+ Ua+aU„,
for the masses demands' that the usual SU(3) mix-
ing angle 8 be 35.3' if $(3100) or its pseudoscalar
analog is to be pure (cc). Thus, the mixing an-
gles obtained by a fit to the pseudoscalar meson
masses predict" gross leakage of (cc) into q and
x'.

(2) The estimates for the mass of the recently
discovered' charmed pseudoscalar D(1865) are
too high by several hundred MeV for the quadra-
tic mass formula. ' "

(3) There must be substantial SU(4) breaking of
coupling constants~ '

g~~ in order to suppress
the decay g-q, (2800)y.

Because these problems have not yet arisen
with the baryons, but only with the pseudoscalar

mesons, we must seek a solution within SU(4).
Rather than go the route of introducing extra sym-
metry-breaking terms in the mass matrix' or
coupling constants, ' ' we choose to examine the
effects of SU(4) multiplet mixing.

There now appear to be two pseudoscalar mul-
tiplets, "w, K, q, X', g, (2800) (which we denote
by P) and K'(1400),"E(1420), q, '(3455)" (P',
partially complete); and two vector multiplets,
p, K*(892), &u, y, g (denoted by V) and p'(1600),
g'(3700) (V', partially complete). Since the mass
splitting within a given multiplet is greater than
the difference in average masses of the multi-
plets, there could be significant effects due to in-
termultiplet mixing. "

Now, the mass matrix elements between states
of the same multiplet, say multiplet 1, generat-
ed by Eq. (1) contain both the symmetry-break-
ing parameter a and four reduced matrix ele-
ments M„M,', A„and B, (see Refs. 1 and 2

for notation). Similarly M„M,', A„B,are in-
troduced for the second multiplet, and T, T',
Ar, Br for the cross terms. We set T = -Ar(l


