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Surface Energy of Simple Metals: Self-Consistent Inclusion of the Ion Potential
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The surface energy for several simple metals is calculated self-consistently with use
of a single variational parameter whose optimal value depends on the crystal structure
and the surface plane considered. The calculation clearly demonstrates the strong depen-
dence of the electron-density profile at the metal-vacuum interface on the discreteness
of the ionic density. The method is as simple numerically as the usual jellium calcula-
tions and can probably be applied readily to more complex surface problems.

We calculate the surface energies of several
simple metals and show that the perturbing effect
of the ions must and can effectively be included
from the outset in the self-consistent determina-
tion of the electron-density profile at the metal-
vacuum interface. A knowledge of this profile is
important for a quantitative understanding of all
surface-related properties of simple metals (e.g. ,
surface energy, ' work function, ' chemisorption, '
and positron annihilation in metal vacancies').
While there exist full solutions' of the three-di-
mensional (3D) Schrodinger equation for isolated
metals and certain crystal faces, we consider
here approximate 1D treatments. These, to their
advantage, are simple enough to show tr ends for
large classes of metals and crystal faces and can
be easily generalized to more complex surface
problems. However, in existing calculations of
this type, the lattice of ions is replaced by a uni-
form background of positive charge, and it is for
this jellium model of a metal surface that the
self-consistent density profile is computed. The
effect of the underlying lattice is then reintro-
duced by means of a first-order pseudopotential
calculation, which assumes that the perturbing
potential is small. ' Our results show that this
procedure is inadequate for most simple metals.

Consider the striking example of Pb illustrated
in Fig. 1(a). The perturbing potential has dips
which are of the order of four fifths of the Fermi
energy, and its average is close to one third of
the bulk value of the effective self-consistent one-
body potential from which the density profile is
generated in the jellium model. Accordingly the
electrons will be strongly attracted inside the
metal by such a potential, Earlier jellium treat-
ments' ' which included the effect of the ions at
most by first-order perturbation theory gave un-
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FIG. 1. Self-consistent effective potential Ve ff(x)
shifted to zero value at the vacuum level (dashed line),
difference between the self-consistent density profile
n(x) and the bulk density nb„&& (dotted line), and perturb-
ing potential [hv(x) —C] due to pseudopotential lattice
effects (solid line) for Pb. (a) Case treated in Ref. 1
(variational parameter C equal to zero); (b) case cor-
responding to the minimizing value of the variational
parameter (C = C = —0.67EF). Note how the screening
by the electron gas tends to reduce the discontinuity in
the effective potential at the jellium edge (dash-dotted
vertical line). The distance from the first lattice plane
to the jellium edge is equal to one half of the interpla-
nar spacing in the bulk.
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realistic density profiles. In addition the first-
order correction to the energy' was comparable
to the unperturbed energy.

We describe a vacational generalization of the
jellium model of metal surfaces which preserves
all simplifying features of the latter, but allows

the lattice of metal ions to act on the density.
The total ground-state energy of a metal occupy-
ing the half space x (0, and whose ions are de-
scribed by a local pseudopotential of the form
u (r) = —Ze'(r +sv„(r), where w„(r) is a repulsive
term which cancels the attractive one exactly
within a core region of radius z„ is given by

5v(r) =Q, zu(ir —li) —e' d'r', '

Except for the first term which is purely bulk
and the last one which is a pure surface contribu-
tion, each separate piece of the energy (1) has a
bulk and a surface part. The surface part of
EM& ~g is the classical cleavage energy .' For
the remaining three terms (i.e. , the jellium con-
tribution), the surface part is obtained by sub-

E[n] = f d'rg, ws(ir -li)n, (r) +EM~,~,g+ T,[n]+E„,[n]

+ ,'e'f—d'rf d'r'[n(r —n (r)]~r —r'i '[n(r') —n, (r')]+ f d'r[n(r) —n, (r)]5v(r) (1)
Here n, (r) is the number density of a fictious
positive background [in our case n, (r) =nb„&g(-x), tracting the corresponding quantities for a uni-
where nb„~ is the bulk electronic density]. E~,h, form system of density nb„~ containing the same
is the electrostatic energy of a lattice of ions of number of electrons. The correct energy and
charge Ze at sites 1 (l„(0), neutralized by a density are found by minimizing Eq. (1) over all
charge density —en+(r). T, [n] is the kinetic en- densities n(r) with f d r n(r) =N held fixed.
ergy of a noninteracting electron gas of density The jellium model is obtained from Eq. (1) by
n(r), and E„,[n] is the exchange-correlation ener- ignoring the last term and minimizing the rest of
gy. ' 5v(r) is the sum over the occupied lattice the energy functional by solving the correspond-
sites of the ionic pseudopotentials, minus the po- ing 1D single-particle equations self-consistent-
tential due to the semi-infinite positive back- ly. The resulting density is then used to evaluate
ground: the last term, where the perturbing potential

bv(r) has been replaced by a suitably taken aver-
age 5v(x) (which vanishes identically outside the
metal).

Instead we generate variational wave functions
by including a simple potential CO(-x) in the sin-
gle-particle equations. This mimics 5v(x) and
nevertheless guarantees that the single-particle
wave functions have the same asymptotic form
inside the metal as in the jellium model. To de-
termine the optimum C we first rewrite the
pseudopotential lattice contribution to the total
energy as

f d'r[n(r) —n+(r)]5v(r) = f dx[n(x) —n, (x)]CO(-x) + f dx[n(x) —n+(x)][6v(x) -CO(-x)],

where the 1D dependence on position has been made explicit. Replacing the last term in (1) by

TABLE I. The surface energy and its components in erg/cm for Pb (x, =2.80, r, =1.12, Z=4) and Cs (z =5.63,
x, = 2.93, Z= 1). In Columns 8 to 5 we show the different parts of the jellium contribution to the surface energy, and
in column 6 their sum. The terms which are explicitly dependent on the structure and face considered are listed in
columns 7 and 8, for the particular cleavage plane defined in column 10. The pseudopotential lattice contribution is
defined in the text; for a definition of the classical cleavage energy, see Ref. 1. The total surface energy is given
in column 9. For each metal the upper line refers to C = 0 (jellium model) and the lower line to the minimizing val-
ue C = C of the variational parameter.

Metal c [EF] Kinetic
Exchange- Jellium Pseudo-

Coulomb correlation subtotal potential
C lass ical
cleavage Total

Surface
plane

Pb

Cs

0.00
—0.67

0.00
0.81

—2800
820

10
53

655
185

11
24

1960
1080

70
119

—185
445

71
90

980
—290

20
17

897
897

12
12

1140
550
108

85

fcc
[11o]
bcc

[11o]

1287



VQLUME 37, NUMl)ER 1~) PHYSICAL REVIE%' LETTERS 8 NovF. Mnr. R 1')7(i

TABLE II. Surface energies. The y values, pseudopotential core radii y, , and exper-
imental values for the surface energy are the same as those used in Ref. 1. In each
case the minimizing value of the variational parameter and the corresponding energy
are given for the most densely packed face ([111]for fcc and [110]for bcc). Pv is the
average of the perturbing potential 6v(x) (see Ref. 1).

Metal Structure

Surface energy
(erg/cm2 j

+c Cm [EF ~ M [ E&) C = 0 C = Cm Experiment

Al
Pb
Ll
Na
K
Rb
Cs

fcc
fcc
bcc
bcc
bcc
bcc
bcc

2,07 1.12
2.30 1.12
3.28 1.06
8.99 1.67
4.96 2.14
5.2B 2.61
5.68 2.93

—0.16
—0.67
—0.2D

0.09
0.21
0.61
0.81

—0.144
—0.414
—0.180

0.011
0.058
0.829
0.454

780 645
1140 550
875;360
280 225
189 187
122 108
108 85

1000
620
480
280
150
120
90

the first term of the right-ha. nd side of (3), we
can variationally derive single-particle equations
which differ from the jellium equations only by
the presence of an additional potential Cg (-x).
The density resulting from a self-consistent so-
lution of these equations is then used to evaluate
the remainder, i.e. , the second ter m on the right-
hand side of Eq. (3). We repeat this procedure
for several values of the constant and minimize
the total energy with respect to C. Since there
is no explicit dependence on C in the expression
(1) for the total energy, our procedure is simply
an efficient way of generating a whole class of
densities (of which the one obta. ined by Lang a,nd
Kohn' is a particular case, namely the one which
minimized the jellium contribution to the surface
energy). While our step potential contains no ex-
plicit information on the structure, the minimiz-
ing value of the step height does depend on the
choice of cleavage plane. Accordingly the result-
ing density profiles, more realistic than those
for simple jellium, are appropriate for directly
calculating other surface-related properties,
such as work functions.

Our calculated density profile for Pb is shown
in Fig. 1(b). The density outside the metal is
smaller and decays more rapidly than in the jel-
lium case, while sizable Friedel oscillations de-
velop inside. Table I shows the effect of the po-
tential step on the individual components of the
surface energy for the two extreme cases of Pb'
(largest negative C) and Cs (largest positive C).
In both cases we observe that the introduction of
the constant potential inside the metal leads to a
completely different distribution of the jellium
part of the surface energy among its three com-
ponents (kinetic, Coulomb, and exchange-corre-

lation). In Pb the electron density profile is
sharpened by the strongly attractive potential,
which leads to a lowering of the surface dipole
barrier and Coulomb energy. Fewer electrons
spill out of the metal, resulting in an increase in
kinetic energy and a decrease in exchange-corre-
lation energy. ' In Cs the opposite eff ect occur s.

Our results are summarized in Table II and
compared with the predictions of the jellium mod-
el and with experiment. Note that the minimiz-
ing value C of the variational parameter roughly
mimics the average value 5v of the perturbing po-
tential 5v(x). The calculated surface energies
tend to be slightly smaller than the measured
ones. Possibly this defect can be remedied by a
nonlocal treatment of exchange and correlation. '
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The electronic structure of the (001) ideal surface of niobium is calculated using a self-
consistent pseudopotential method. Surface states are identified and analyzed throughout
the two-dimensional Brillouin zone. Charge densities and the local density of states near
the surface are presented and discussed. Our calculations predict strong surface features
in the density of states in the range 0-2 eV above the Fermi energy. Occupied surface
states are also discussed.

A self -consistent pseudopotential calculation'
is presented for the (001) ideal surface of Nb. To
our knowledge, this is the first fully self-consis-
tent calculation for a transition-metal surface.
The band structure and real space distribution of
the electrons near the surface are determined.
Surface states of different angular-momentum
character are found to exist over a wide range of
energies and over different portions of the two-
dimensional (2D) Brillouin zone. Our calculations
predict strong surface features in the density of
states in the range 0-2 eV above the Fermi en-
ergy.

Although previous calculations' ' have provid-
ed useful information about band narrowing and
some properties of surface states, their limita-
tions have motivated us to attempt the present
calculation. Using a self-consistent pseudopoten-
tial method, "'we further take into account the
important effects of screening and dehybridiza-
tion of orbitals at the surface and obtain addition-
al information about surface bands and their k-
space distribution.

In the present calculation, a nine-layer slab of
Nb with the (001) surfaces exposed on both sides
is used to simulate two noninteracting surfaces.
The slab is placed in a periodic superlattice with
the slabs separated by a distance equivalent to 6
atomic layers of Nb. Screening is achieved using
a Hartree potential derived via Poisson's equa-
tion and a Slater-type exchange potential. The
only input to the calculation consists of the struc-
ture (i.e. , the atomic positions) and a fixed ionic
pseudopotential for the Nb" ion cores. The Nb"
ionic potential used here is an l-dependent non-

local pseudopotential of the form
2

V~=V(r)+ Q f, (r)P, ,

where P, are projection operators for the vari-
ous angular-momentum components. This poten-
tial was obtained by fitting the spectroscopic
term values of the Nb" ion (i.e. , the Nb" plus
one-electron system). ' In addition, we demand-
ed that when V was used to calculate the Nb neu-
tral atom self-consistently, it would reproduce
the eigenvalues and the positions of the wave-
function maxima calculated by Herman and Skill-
man. '

Self-consistent bulk energy-band calculations
were carried out to test the Nb+' potential. Plane
waves with a maximum reciprocal-lattice vector
corresponding to an energy of 10.2 Ry were used
in the basis set. This corresponds to about eighty
plane waves in the expansion of the eigenfunc-
tions; another eighty plane waves were included
by second-order perturbation theory. Since
V„„„andV„,h die quickly in q space, it
does not make a significant difference whether
the second group of plane waves is used or not in
the self-consistency. We do not include these.
The s and p levels converge to within 0.01 eV.
The d levels shift by at most 0.2 eV if the matrix
size is doubled. Good agreement was obtained
with previous calculations on bulk Nb. " Figure
1 shows the calculated density of states (DOS)
evaluated using 112 k points in the irreducible
part (I/48) of the bcc Brillouin zone together with
the DOS from Mattheiss's augmented-plane-wave
(APW) calculation. " The two curves are in agree-
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