
Vot. I.)MI, 57, Xt. MoER it& PHYSI C A I. R K V I K %' I. K II K R S 8 NovEMBER 1976

Spectral Distribution of Drift-Rave Fluctuations in Tokamaks
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An expression for the spectral distribution of drift-wave fluctuations is obtained from
a new mode-coupling equation that describes the superposition of drift-wave normal
modes induced by the divergence of the nonlinear E& B convective flux. Computations
for the adiabatic toroidal compressor experiment indicate t'hat the observed spectrum
is consistent with the t'heoretical spectrum.

Previous drift-wave turbulence calculations
have served mainly to develop an estimate for the
net fractional turbulent energy density summed
over modes at saturation, as obtained from sev-
eral different considerations. These include the
energy density released by profile flattening; the
limit of linear motion when convection through
one wavelength occurs during one wave period;
and the limit of a turbulent damping, estimated
by A~'D~, comparable to the linear growth rate.
The several approaches generally give a consis-
tent description of the magnitude and scaling of
the total turbulent energy density and, equivalent-
ly, the average squared density fluctuation for
drift-wave type instabilities. Recent measure-
ments by Mazzucato' with microwave scattering
from small-scale density fluctuations in the adia-
batic toroidal compressor (ATC) have provided
a direct, nonperturbing measurement of the wave-
number spectrum for drift-wave fluctuations at
six values of the azimuthal wave number, rang-
ing from k„p= 0.3 to 1.5, where p =c(m,. T,)"'eB.
In the course of a theoretical analysis of this ex-
periment I have developed a mode-coupling theo-
ry for the shear-controlled drift-wave normal
modes. From the theory I obtain for the station-
ary spectral distribution of drift-wave fluctua-
tions an expression that appears to agree well
with the experiment. The expression is consis-
tent with the previous theoretical results for the
total turbulent energy density summed over the
wave spectrum.

In this Letter I consider the nonlinear stabiliza-
tion of the drift modes introduced by the diver-
gence of the convective E~ 8 flux in the ion-fluid
continuity equation. Two physically distinct non-

linear effects are introduced by this flux. One ef-
fect arises from the Burgers or Korteweg-de
Vries type of nonlinearity' that produces a steep-
ening of the wave form in its dependence on the
phase variable & =k, y —+~t. The magnitude of
this wave-form distortion is readily calculated
at sufficiently small amplitudes, and I estimate
that the steepening is a subdominant effect in the
experiment under discussion. The second effect
is the diffusive or viscous damping in a wave of
given k, &y induced by the presence of the other
waves. The latter effect appears in the theory
as the result of the nonlinear Doppler shifts in
the given wave due to the motion of the fluid from
the other waves. The nonlinear diffusive effect
derived here is more complicated than has been
indicated by previous theories' that shitt &T, to
vy+ik~'D~, with D~ determined by the well-
known consistency equation. In the present theo-
1 y I retain cel tain secular tel"ms arlslng from
the small-amplitude perturbation expansion of
the nonlinear ion-fluid equation, where the iden-
tification and summation of higher order terms
may be understood in terms of the methods used
earlier for Vlasov turbulence by Choi and Hor-
ton. '

Previous kinetic theory treatments of linear
drift waves indicate that the ion response is rea-
sonably well approximated as hydrodynamic for

3T, and ~7), ~
=~dlnT, ./din. n~ &, as is the case

for the experiment. As explained previously, we
neglect as a subdominant effect the steepening
nonlinearities due to convective derivatives and
the electron temperature gradient. We obtain the
equation for the ion density n,. (xt) in terms of
field E = —Vy(xt):

We introduce n, y for the scaled, finite-amplitude variables by writing

yg,. (xt) =n, (x)[l+n(xt)], eQ(xt)=T, (x)cP(xt),
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where n is the local fractional density fluctuation and q is the potential fluctuation measured with re-
spect to the local temperature T, (x) We seek solutions of Eq. (I) for n; =n;(p) for p„,=(cp')"'-~« l.
The electron response is taken as linear and is obtained from the kinetic-theory calculation of Horton'
that uses the Lorentz collision operator and a three-energy-range approximation for the nonadiabatic

lectron response. The linear approximation for the electrons is justified a posteriori by estimating
the electron scattering at the turbulence levels obtained from the fluid mode coupling. In the interme-
diate electron energy range, for example, the linearization follows from the fact that electron trapping
velocity is found to be small compared to the electron velocity.

Separating out the linear operator I., P in Eq. (1) and introducing the scaled field variables, we ob-
tain

8R " 8' 8p 8R, 8+i —=L. (p +D
8t 8x 8$ 8g 8x

with the linear ion fluid operator 2,. defined by

I, q =[~„,+k~~'c, '/~+~p'(-k, '+s„')]q» (x) exp(ik, y+ik, z -i~t)+c.c. ,

(2)

where v„=—(k„cT,jeB)(dlnn, /dh), p =c(m;T, )"'/eB, and Ds =cT, /eB. The eigenfunctions' of the ion

response I.; u» (x) = I.» (e)u» (x) are localized about the rational surfaces x, where k ~ B =k „(x=x, )B = 0.
To a good approximation' the eigenfunctions are given by u„(x) = [(io„)"'/2"n!z"']"' H[(i o»)"'(]
x exp(-ic $'/2), where $ =x -x, and o» = ~k,~c, /&upI. , with o» = —o,*. We proceed to expand the den-

sity and potential fluctuations in a time-dependent superposition of normal modes,

cp(xt) =P» (q»(t)u»(x) exp(ik„y i+k, z—ice»t)+up»(t)u» (x) exp(-ik, y —ik, a+ice» t)],
with q» (t) =cp»*(t), and to neglect the harmonic components generated by the self-interaction in the
normal modes. Assuming that the frequency spectrum

P» (~) = f' dt exp[i(ru -(u»)t] j» (t)

of the normal-mode amplitudes remains peaked about + = c)~, we obtain the following equation for the
time dependence of qr» (t):

BD, s . ,~ M(k, q)ip, (t)i'
» s&& st »»» 8 ~ + +a» q»

=D~P &(k, q) ' ' — ' ' ' ' y, (t)cp, , (t) epx[-i(u, +c', ,, —~, )t],
I..((u. ) I.» . ((u» .)

IVI(k, q) = ,' f '
(qh»u-, +ku»i~, )( hq,»uku»tt, )dx, N (k, q) = —,'f u»[—qi~»,u, —(k q)u», ii, ]dx—, (5)

with k» =du»/dx and D~ =cT, /eB. In Eq. (4) D, (&u) and D(»&u) are the real and the imaginary parts of
the dispersion relation where, with the fluid approximation for the ions and the kinetic theory calcula-
tion of Ref. 5 for the nonadiabatic part H, » (~» ) of the electron response, we have

D» ((u» ) = 1+k p —(u„/cu» H, » ((u») +s S(l+-2n)~ v„,)/(u» = 1-H,» ((o») —I » ((u»)/&u»,

where I.»(~») is the eigenvalue of the ion response. The linear growth rate of the lowest radial mode,
which is given by y»= —ImD» (&u»)/[BD» (&»)/ev»] with n =0, has a maximum between k, p =0 5 and 1 0
depending on the magnitude of g, and a cutoff due to ion Landau damping for k„p below k, p = 2(2T,. /
T,)' '(r„/I. , ). Ion Landau damping is the microscopic damping mechanism that allows a steady-state
energy balance to be achieved in the saturated turbulent state. The damping is present both at low k, p
and at k, p- 1 for k„(x)c,- & ~», which are regions accessible through mode coupling and radial wave
propagation. The mode-coupling terms on the right-hand side of Eq. (4) are of the same form as those
derived by Sagdeev and Galeev from kinetic theory. Since the dispersion essentially forbids the reso-
nant interaction w, +&@»,=w» and since in the linear approximation I » (&u») = &u„ it appears justified to
neglect the weak mode-coupling interactions induced by the terms proportional to X(k, q). In this case
nonlinear saturation is obtained by balancing the terms of the left-hand side of Eq. (4).
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To reduce the mode-coupling equation further we note that the relative spacing of the azimuthal
modes (k, =m/r and hence nk, /k„= 1/k, r-p/r) is sufficiently dense to permit the introduction of the
continuous spectral density I(k, p) and replace the sum over modes with integrals. We define the nor-
malized spectral density of the potential fluctuations by

2 2~~
=(P') = f pdk, I(k, p),

e

where I(k, p) is then related to!pk (t)!' by,

pI(k, p, t) = (2e'/T, ')(2m) 'ff V dk„dk, ! q&k(t)! ',

(6)

where V =2&'z'R is the volume of the torus. In addition we reduce the equation further by calculating
the matrix element M(k, q) with sinusoidal approximations for u, (x) and u, (x) with the radial wave num-
bers k„and q„ taken from the average radial wave numbers of the eigenfunctions. With these approx-
imations the stationary spectrum becomes the solution of

Dr( ),k,D,I,""
pd&, (k,'+q, ')I(V, p)

(dg, —
p „g m

+p Q)p —(dq +'E
Vg,

(7)

k„k, D 2pI(k, p
/dk !

k k k (8)

where Dk~(~k ) &0. With the further approxima-
tions that k, p =S"' and!d~„/dk J =v„„ the re-
sult may be written as

I(k ) = Wq —D» (vk)
n, T, mk, p

(9)

where Wz =n, T, ( p/r„)'(L, /r„) is the maximum
fractional turbulent energy density available to
the instability at saturation. The spectrum peaks
on the long wavelength side of the maximum
growth rate and returns to essentially the ther-
mal fluctuation level in stable regions. The elec-
tron fluctuations are approximately equal to the
potential fluctuations, and the turbulent energy

for k regions where Dk (&uk) &0, and I(k, p) —= I h(k„p)
for stable regions where Dk~(ak) & 0. The ther-
mal fluctuation level is readily estimated using
k~~r„=k, pS"' to obtain I&(k,p) =-k, pS(n, p'r„) '
x (1+k,'p') '. In the present case I@-- 10 "which
implies a time of order 13/y or a few tenths of
a millisecond to reach saturation at I~ 10 '.

In Eq. (7) the quantity v, describes the finite
correlation time of the c „=&,resonance. The
decorrelation rate v, is proportional to the turbu-
lence level which is low for the systems of inter-
est We a. ssume that the spectrum I(k, p) is broad
compared to the resonance width, which allows
I(k,p) to be obtained independently of the exact
form of v~. For an estimate of v~ we obtain from
the simply renormalized theory of Choi and Hor-
ton' that v„=&ukk„'r„'k, pI(k, p) For vk«. vk and a
broad spectrum, Eq. (7) reduces to

'[-D '(~ )j
ne Te ~ gp 7t'k&

(10)

where Ak is the width of the unstable k, region.
This result for W/n, T, agrees with earlier theo-
retical calculations which indicate that in fully
developed strong turbulence W& is the maximum
turbulence level. For weaker turbulence the re-
sult indicates that W = Wz(n, k, /wk„)! max( —Dk')!
can be considerably less than W&.

In recent microwave scattering experiments on

ATC, Mazzucato' measured the spectral distribu-
tion of electron density fluctuations for frequen-
cies and wavelengths in the range of drift waves.
From the observed scattered microwave power
Mazzucato uses scattering theory to infer the val-
ue of (!n, (k)! ') for six values of k where k is es-
sentially the azimuthal mode number k, used in
the above analysis. The total mean fluctuating
density in his work is given by (n) = I, (!n(k)!') dk.
In terms of the scaled spectral density I(k, p) that
is defined in the above analysis we have that
pI(k, p) =(!n(k, )!')/n, '. In Fig. 1 I have repeated
the result reported by Mazzucato and have added
the result of my calculation from Eq. (9) for that
experiment. For the calculation of ImH„(+k) I
use the three-energy-range approximation ex-
plained in Ref. 5. In evaluating the theoretical
quantities I have digitized the reported density
and electron temperature profiles and calculated
the drift wave parameters at r = 6.4, 8.0, 9.6,
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and 11.2 cm assuming that the current density
j„(r) varies at T,"'(r). Similar evaluations for
other tokamak experiments are being performed
and will be reported in a later article.

In conclusion, the theory appears to explain
several features of both the spectral distribution
and the total mean density fluctuation observed
in the experiment. We observe that the theory is
a first-principles calculation in that, although

FIG. 1. Comparison of the theoretical spectral distri-
bution I(k~p) given by the solid curve, with the previ-
ously reported data (Ref. 1) for the electron density
fluctuation spectrum obtained from microwave scatter-
ing in the ATC experiment.

*Work supported by the U. S. Energy Research and
Development Administration Contract No. E-(40-1)—
4478.

E. Mazzucato, Phys. Rev. Lett. 36, 792 (1976).
V. N. Oraevskii, H. Tasso, and H. Wobig, in Pro-

ceedings of the Third International Conference on Pl'as-
mas Physics and Controlled Nuclear Fusion Research,
Novosibirsk, U. S. S. R. , 1968 (International Atomic
Energy Agency, Vienna, 1969), Vol. I, p. 671; H. Tas-
so, Phys. Lett. 24A, 618 (1967); E. Ott, W. M. Manhei-
mer, D. L. Book, and J. P. Boris, Phys. Fluids 16,
855 (1973).

T. H. Dupree, Phys. Fluids 10, 1049 (1967).
D. Choi and W. Horton, Jr. , Phys. Fluids 17, 2048

(1974).
W. Horton, Jr. , Phys. Fluids 19, 711 (1976).
N. T. Gladd and W. Horton, Jr. , Phys. Fluids 16,

879 (1973).
7R. Z. Sagdeev and A. A. Galeev, Nonlinear Plasma

Theory (Benjamin, New York, 1969), pp. 103-110.

Alfven-Wave Heating in the Proto4 leo Stellarator*

S. N. Golovato and J. L. Shohet
The University of &9sconsin, Madison, &&~isconsin 53706

and

J. A. Tataronisf
Courant institute, Nell' )'ork University, Net Yovk, Ne~e Vovk 70072

(Received 27 September 1976)

Global excitation of Alfven waves in the Proto-Cleo l - 3 stellarator was accomplished
by exciting a helical winding corresponding to a q =-3 rational surface with a pulsed, high-
power rf source. A doubling of both the electron and ion temperatures was observed,
and a slight increase in the ratio of the temperatures with and without rf heating oc-
curred at the predicted resonance locations. Enhanced loss also occurred during heat-
ing, with 2.~-kHz oscillations observable in a microwave interferometer signal after
heating.

Alfvd'n-wave heating of toroidally confined plas-
mas has been proposed by several authors. ' '
Recent experimental work at Kyoto University'
and at Kharkov' apparently show that local excita-
tion of Alfvdn waves leads to heating of both ions
and electrons, when the resonant condition ~

= kIIV„was satisfied. V„ is the Anvdn speed and
k

11
is the wave number in the direction parallel to

the dc magnetic field. k
11

was always greater
than 2nL where L is the distance around the tor-
us. It is the purpose of this Letter to report suc-
cessful Alfvd'n-wave heating of plasma contained
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