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The path integral of quantum gravity probes space-times with nontrivial topology and
induces chiral symmetry breaking via an anomaly proportional to ~~+ R 8»R~~~ in the
divergence of the axial fermion number current. The corresponding classical instanton
solution of Einstein's equations with cosmological term is found. The Euler-Poincare
characteristic and ordinary instanton number are also discussed.

Non-Abelian gauge theories exhibit interesting
topological invariants. ' One of these, instanton
number, ' appears to play the central role' in sym-
metry breaking via Adler-Bell- Jackiw (ABJ)
anomalies. ' These are related to a (quantum)
tunneling between topologically inequivalent vacua.
Here we explore the topological invariants of
gravitation theory —the gauge theory of the Lo-
rentz group and their connection with anomalies.
We find an additional gravitational term in the
ABJ axial baryon-number anomaly, as well as a
further topological invariant apparently unrelat-
ed to anomalies. We find complex projective two-
space P, (C) (two complex dimensions, i.e. , four
spacelike real dimensions) to be a. solution of the
classical Einstein equations with cosmological
term, that plays the role of a gravitational in-
stanton for the ABJ anomaly. Finally we recon-
sider the original Belavin-Polyakov-Schwartz-
Tyupkin (BPST) instanton solution' in a general
relativistic setting.

In the O(4) gauge theory there are two kinds' of
instanton number (q,(O(4) ) =Z x 2 ):

To(c) = fFF"d x yo(s) = f FF~*d~x

FF+ = —(g/967I' )ep v 'F aBF 8a

FF~* = (1 ' 1287'')e(' vpo e~~&'F ~~F
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where a, P, y, and 5 are internal O(4), and p, v,
p, and o are Lorentz indices, respectively. Ein-
stein theory viewed as a Lorentz gauge theory
suggests the analogy'

O(4) gauge theory —gravitation,
oH a

FPv R
B'av ~

where R 8&, is the Riemann-Christoffel tensor.
The analogs of 7.

o~4& and Xo«& are the quantities,

~ = fRR*d'x, )(= fRR**d'x,

~ Pvp+
RR* 96, ~ gpvR ap, g,

7l' g
&nBy6 &PVPo

RR**
l28 2 ~ ~ RaspvRyqp, Wg.

7T g g

X is recognized as the Euler-Poincare character-
istic (related to the handle number), and 7 as the
index of the four-dimensional space-time mani-
fold.

The integrands RR*, RR**, EF*, and FF**
share the following important features: (i) They
are exact divergences" (for the handle number
density this is appropriately known as the Bach
identity'). (ii) They have dimension of (length) 4

so that their integrals are dimensionless num-
bers (integers for compact manifolds). (iii) They
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are singlets of all internal symmetries (color,
flavor). (iv) RR*, FF*, and FF** are pseudo-
scalar [e I'& in the expression of FF** is invari-
ant under space inversions as it has internal O(4)
indices], but RR** is scalar, and all four quan-
tities are even under charge conjuga, tion. In ad-
dition, RR* can be expressed in terms of the
Weyl conformal tensor so that w is Weyl invari-
ant. '

We nom ask the main question: To what anom-
alies do RR* and gR** eontribute7 In other
mords, are there currents conserved in the clas-
sical field theory, such that in the quantum theo-
ry their divergence equals RR* or RR**&

We start with RR*. Its quantum numbers are
such [(iii) and (iv) above] that it can only contrib-
ute to an anomaly in the divergence of the axial
fermion-number current j'" as in the ABJ case.
We thus try

&
qj '" = sq (Wgh ~ Q, y,$) = ERR *.

Here h~ is the gravitational V~erbein. The space-
time integral of 8& j'" is AQ', the change of the
axial fermion charge: an integer. The space-
time integral of RR~ is the index of the space-
time manifold which for compact manifolds is al-
so an integer. Hence the pr oportionality constant
x must be a rat'ional number.

To see whether Eq. (2) works in a way similar
to the ordinary ABJ anomaly me have coupled the
gravitational field to a fermion field and have
computed the anomaly in the axial-vector Ward
identity in the case of tmo external gravitons. In
addition to the fermion triangle diagram, there
is here also a second diagram in mhieh the tmo

gravitons are emitted from the same point of the
fermion loop by a seagull vertex. We have made
use of the regulator method mhich automatically
maintains gauge invariance (general covariance)
but possibly jeopardizes the axial-vector current
conservation. After a straightformard computa-
tion me in fact find an anomaly,

Bp jp = 4RR*, (3)

or r =-,' in Eq. (2) (for N fermions in the theory
y =-,')V"). An instanton interpretation of this value
of z mill be given below. The above expression
contains the contributions from diagrams made
of all possible graviton trees attached to a single
fermion loop.

Discussions on possible radiative corrections
to the anomaly in Eq. (3) are necessarily ob-
scured by the absence of a renormalizable theory
of quantized gravity. We can provide, homever,

Hence the correction to the anomaly from one ad-
ditional internal graviton line, for instance, van-
ishes:

=0 )

where D(x —y) is the graviton propagator. On the
other hand, using generalized unitarity (or the
tree theorem) multiloop processes can be com-
puted in a gauge invariant manner by an appro-
priate "seming" procedure from lomer-order loop
diagrams. The procedur e almays involves func-
tional differentiations and hence by mathematical
induction all higher loop corrections mill vanish.

To see the topological origin of the anomaly (3)
let us find a classical solution of Einstein's equa-
tions with cosmological term that has index ~ = 1.
Complex projective two-space P,(C) has v= 1 and
admits a Kaehler metric, as noted by Fubini at
the turn of the century. " The corresponding four-
dirnensional real Riemannian [signature (++++)]
manifold has the metric,

4a' x„x,+x„x„

where a is a constant length, and

V V
xJf 5pvx p xp Cpvx

0 1 0 0
—1 0 0 0
0 0 0
0 0 —1 0

(6b)

Starting from Eqs. (6) one readily calculates
the curvature tensor and inserting into Eqs. (1)
finds that in this case 7= 1, g = 3 (by contrast
spherical de Sitter space has 7 = 0, X

= 2). Re-
markably, we find the metric (6) to be a solution
of Einstein's equation (in vacuum) with cosmo-
logical constant A = 3/2a'. For every value of the
parameter a there is a solution, This is parallel
to the BPST solution of ordinary Yang-Mills the-
ory, as is the appearance of the factor a' (a2+x-')

in Eq. (6). The solution (6) of Einstein's equa-
tions plays the role of a gravitational instanton.
The corresponding anti-instanton is obtained by

a formal and nonrigorous argument which sug-
gests that to all orders in perturbation theory,
the anomaly should not be renormalized. We
first note that since RR* is a total divergence,
me have
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leaving the metric (6) unaltered, but changing the
orientation (the Vierbein) of the space-time mani-
fold. The large-x behavior of this instanton solu-
tion isg„,-0, R»,—0, R&,—0, but R =const
since g"'- ~ [the manifold P, (C) is actually com-
pact!]. The mechanism leading to the anomaly (3)
appears to be the same as in the ABJ case. We
have not carried out the corresponding tunneling
calculations, but we note that the tunneling ampli-
tude contains the factor exp(- constx cc'/G) so that
small values of a dominate.

One may be intrigued by the fact that unlike the
ordinary ABJ anomaly, where the coefficient of
I'E* is the integer 2, the coefficient of RR* in
Eq. (3) is fractional. This means that the actual
tunneling due to the anomaly (3) occurs in the 4n
instanton sectors (n = 1,2, 3, . . . ) of the theory

We now consider the other topological invariant
of the gravitational field, the Euler-Poincare
characteristic i(. Its density RR** [Eq. (1)] does
not seem to lead to any anomalies. Indeed in view
of its quantum numbers (Jrc =0'+) the only candi-
date is an anomaly in the divergence of the Weyl
scale current. But the relevant piece of this cur-
rent is a c-number quantity and hence leads to
no quantum anomalies. The essential c-number
nature of the Weyl current is most readily seen
by writing down a Weyl-invariant gravitational
Lagrangian [e.g. , Eq. (7) below] and coupling it
to fermions. The contribution of the gravitation-
al and y fields to the Weyl current can be gauged
away altogether, while the contribution of Fermi
fields (even under charge conjugation!) is an anti-
commutator y~(g, c!|8j (rather than the usual
commutator) and hence a c-number. Additional
scalar fields may give q-number contributions to
the Weyl current but this is inconsequential as
they produce no anomaly.

We now briefly note the effects of general rela-
tivity on the BPST-instanton solution of classical
Yang-Mills theory in flat space. To this effect
consider the action,

A = f d'xvg[ —(cp'/12)R + —,'Bqcps" cp

—A y' —4F ' F""],

cp being a scalar field, and F„,' the SU(2) Yang-
Mills fields. The action A is invariant under
Weyl transformations'

g„,- 0'(x)g„„, cp-0 '(x)cp,

iF„„-F„', x„-x„,

that depend on the arbitrary function Q(x). By a
Weyl transformation we can force cp to take the
constant value (3/4~G)"', where G is Newton's
gravitational constant. In this gauge the action A

is identical to that of Einstein-Yang-Mills theory
with cosmological constant A = 9X/27cG. The field
equations derived by varying the action A admit
the obvious solution,

gu ='~ A„' = (A& )spsv~

cp = cp, = (2b'/X) "'(x'+ b') ',

where (A&')sps~ denotes the ordinary BPST solu-
tion and y~ is Fubini's solution" of flat-space
X@4 theory. From this solution, the Weyl trans-
formations generate new solutions for every con-
formally flat space-time, in particular for de
Sitter space.

To sum up, our main result is that the path in-
tegral of quantum gravitation probes space-times
with nontrivial topology (ve 0) and thereby induc-
es chiral symmetry breaking via an anomaly [Eq.
(3)] in the divergence of the axial fermion-num-
ber current. This provides an affirmative ans-
wer to Chem's old question' as to whether 7

"could. . . have some use in physics. "
We derived much stimulation from a discussion

with Dr. G. 't Hooft in the early phases of this
work. We have profited from interesting discus-
sions about characteristic classes with Professor
R. Lashof, and enjoyed numerous valuable con-
versations with Mr. John Sidles especially on the
general relativistic BPST instanton. After the
completion of this work, reports by G. Domokos
[DESY Report No. DESY 76/24 (unpublished)] and
F. Wilczek [Princeton Report No. 1976 (unpub-
lished)] have reached us. Domokos treats Fubi-
ni's solution @F in a Weyl-invariant general rela-
tivistic setting. His discussion is a special case
of that at the end of this paper. Wilczek explores
the topology of O(4) ga, uge theory and of gra, vita-
tion theory with a very different emphasis and
little overlap in results with us.

Note added. —Since submitting this paper, we
have become aware of work by R. Delbourgo and
A. Salam, Phys. Lett. 40B, 381 (1972), in which
the gravitational correction to partial conserva-
tion of axial-vector currents is calculated but a
result differing by a factor —.'. from our Eq. (3) is
found. Also a paper by A. A. Belavin and D. E.
Burlankov, Phys. Lett. 58A, 7 (1976) deals with
RR* and RR** but with an emphasis quite differ-
ent from ours. We thank Dr. Judy Lieberman,
Professor Heinz Pagels, and Professor Roman
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Jackiw for calling these references to our atten-
tion.

*Work supported in part by the National Science Foun-
dation, Contract No. PHYS74-08833, and the Louis
Block Fund, the University of Chicago.

For an elegant l eview of the early work on topologi-
cal invariants in gauge theory see S. Coleman, to be
published.

~A. A. Belavin, A. M. Polyakov, A. S. Schwartz, and
Yu. S. Tyupkin, Phys. Lett. 59B, 85 (1975).

3G. 't Hooft, Phys. Bev. Lett. 37, 8 (1976), and to be
published. See also, B. Jackiw and C. Bebbi, Phys.
Bev. Lett. 37, 172 (1976); C. Callan, B. Dashen, and
D. Gross, to be published,

S. Adler, Phys. Bev. 177, 2426 (1969); J. Bell and

B. Jackiw, Nuovo Cimento 60A, 47 (1969).
'See, e.g, Y.-M. Cho. J. Math. Phys. (N. Y.) 16, 2029

(1975).
Shiing-Shen Chem, J. Soc. Ind. Appl. Math. 10, 751

(1962); C. B. Allendoerfer, Am. J. Math. 62, 243
(1940).

~C. Lanczos, Ann. Math. 39, 842 (1938); B. Bach,
Math. Z. 9, 110 (1921).

8See, e.g. , P. G. O. Freund, Ann. Phys. (N. Y.) 84,
441 (1974).

~See, e.g. , J. W. Vick, Homology Theory (Academic,
New York, 1973), p. 166.

' G. Fubini, Atti Inst. Veneto Sci., Lett. Arti, Cl. Sci.
Mat. Nat. 6, 501 (1903),
"S.Fubini, CEBN Beport No. Th. 2129-CERN, 1976

(to be published).

Radio-Frequency Atomic Beam Measurement of the (2 Sii'2 F = 0)-(2 P&~2, F = 1)
Lamb-Shift Interval in Hydrogen

D. A. Andrews and G. Newton
School of Mathematical and I'hysical Sciences, The UnA~ersity of Sussex, Brighton BM 9qH, Sussex, England

{Beceived 23 June 1976)

The (2 Sfgp I 0) (2 Qf/2 I' 1) interval in atomic hydrogen has been measured in zero
magnetic field by scanning a radio-frequency perturbation through the atomic resonance.
The measured interval was found to be 909.904+ 0.020 MHz, which is consistent with that
reported by Lundeen and Pipkin, 909.940+ 0.020 MHz. Our deduced value of the Lamb
shift 1057.862+ 0.020 MHz is in good agreement with Mohr s calculated value 1057.864
+ 0.014 MHz but not with Erickson s value of 1057.912+ 0.011 MHz.

In this Letter we report a measurement of the
(2'S,~„E=0)-(2'P, ~„F=1) interval in atomic
hydrogen and from it deduce a value of the hydro-
gen n=2 Lamb shift. Our method differs from
that of a previous determination of Lundeen and
Pipkin' in that we have used a slower beam (21
keV) and a single microwave region in the form
of a 50-Q transverse transmission line to induce
the transition.

The separated-field' approach of Lundeen and

Plpkln %'ould appear to have an 1mportant advan-
tage over the single-field technique' because it
produces an interference signal w'hose linewidth
can be made significantly narrower than that ob-
tained by the single-field method. However when
one of the atomic states can decay by spontaneous
radiation, "interference narrowing" of the reso-
nance is obtained at the expense of signal strength
as can be seen in Fig. 3 of Ref. 1 in which Lun-
deen and Pipkin report a threefold narrowing.
The significant loss in signal strength and in-
creased complexity of the line shape and appara-
tus are major disadvantages which should be

weighed against the advantages of having a much
reduced linewidth. In our experiment we have
chosen to use a single-field region in the form of
a 50-0 transverse slab line' and a slower beam
(21 keV) which together ensure a.n adiabatic
smitch-on and -off of the perturbation. Since the
solutions of Maxwell's equations for slab-line
geometry (see Ref. 4) can be obtained analytical-
ly, a precise description of the spatial distribu-
tion of the field exists, so it is possible to give
an accurate description for the atomic and instru-
mental line shape.

Figure 1 shows the main features of the appara-
tus in which the metastable hydrogen beam is pro-
duced by charge exchange on molecular hydrogen
of a 100-p, A 21-keV proton beam extracted from
a radio-frequency ion source. ' Noting that the
natural linewidth of the 2P state is =100 MHz

then, from Fig. 2, it can be seen that an oscilla-
tor tuned to about 1120 MHz will simultaneously
drive both the j3 and y resonances, thus quench-
ing the 2'S»„F= 1 level by A,&I~ = 0 tr ansitions.
Radio-frequency state selection of the metastable


