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TABLE I. Measured circular polarization fractions
(S/I) e„-& at 0,'= 1.5' and comparison with theoretical val-

(~/I) theo r.

300k@V Ar' on CU
I

~ i & (4609 A 1 = 0.09 J

Jo J %ave-
Multi- lower upper length
pl«state state [Al

s/r
exp

S/I
theor

incoming bgclm

a=10'

4p2Do

4s2P

4p~2y'o

4s'2D

4p 4ao

4s4P

4s4P

4P 4~o

3d 4D

3/2
3/2
1/2

5/2
5/2
3/2

5/2
5/2
3/2
3/2
1/2
1/2

5/2
5/2
3/2
3/2

5/2
3/2
3/2

7/2
5/2
5/2

7/2
5/2
5/2
3/2
3/2
1/2

5/2
3/2
5/2
1/2

4879.9
4726.7
4965.1
4609.6
4637.2
4589.9

4348.1
4266.5
4426.0
4331.2
4430.2
4379.7

4806,0
4735.9
5009.3
4847.9

0.65(4)
0.33 (5)
0,64(4)

0.76(4)
0.17(7)
0.72(4)

0.62 (4)
0.17(4)
0.60(10)
0.21(3)
0.57(10)
0.43(10)
0.15(3)

—0.14(4}
0,50(10)
0.10(3)

0.68
0.31
0.72

0.66
0.21
0.69

0.63
0.16
0.55
0,20
0.50
0.50

0.18
—0.17

0.60
0.14

4401.0 —0.27{10) —0.43

b, ~= 6 A full width at half-maximum, running from
4000 to 5500 A in 0' and a light, respectively,
showing clear Ar II line spectra including only
some strong CuI lines and weak CuII lines from
sputtered Cu. The errors quoted are composed
of statistical counting and spectral blending un-
certainties but do not account for sur face proper-
ties. These are determined by the degree of pol-
ish pl lor to installation, the deposltlon of impur-
ities under ion impact, ' and cleaning by sputter-
ing. ' The latter two are competing effects which,
in measurements at 2x 10 ' Torr with low beam
flux (- 1 p. A/0. 5x 5 mm') at 1, led to impurity
deposition a.nd low va.lues of S/I = 0.34 for the
4609-A line as in Fig. 2. For the results in Ta-
ble I, the Cu target was exposed to a beam flux
—9 p. A/2. 5 mm' and appeared as a clean and high-

ly polished mirror thereafter.
As a first stage in the understanding of the an-

isotropic excitation process, it is of value to de-
termine the angular distribution of the scattered
ions. The difficulty of applying available scatter-
ing results from the literature' to our conditions
(2x10 ' Torr, 1 p. A/2. 5 mm', surface granula-
tion - pm) led us to investigate the scattering of
He', Ar', and Sn' beams at various energies and

angles n with our target held at+280 V. Typical

S&I I4609i, ) = 0 P6

z

5/I I4609 A) = 0 34 i max = 3936

FIG. 2. Polar diagrams of the scattered-ion current
at three angles of inclination +. Helative values of the
maximum scattered current are given (i„„,in arbi-
trary units), and each curve is normalized such that
i, ~,„=1for that curve. Inserted are S/I values meas-
ured in the 4609-A light emission at the corresponding
angles o. .

results of the scattered ion current for Ar' on a
Cu target are shown in Fig. 2. %e find in all cas-
es for n &5' a well-defined forward-scattered
peak at 0- 2n which we attribute to predominantly
singly charged scattered beam ions' because no
Ar III lines could be observed. The further peak
near 6 = 70 is assigned to sputtered Cu ions since
it increases with incident ion mass, in agree-
ment with sputtering yields, ' and since weak
Cu II lines are observed. In Fig. 2 measurements
of S/I for the 4609-A line are also inserted. From
the rapid decrease of S/I with increasing 8 we
conclude that the interaction leading to the large
orientations is a strong funtion of 0.

In a second stage in understanding of the aniso-
tropic excitation process, one can draw conclu-
sions from the magnitudes and signs of the mea-
sured S/I values. Assming I.S coupling for the
beam and target atoms the spin-orbit interaction
is essentially turned off during the short interac-
tion time ((10 "sec) of the ions with the surface.
Thus, an oriented total orbital angular momen-
tum (L) can be generated by pure ion-surface
Coulomb interaction processes. %hen the ion is
leaving the surface, the corresponding isotropic
spin S has to be coupled to the oriented (L) in or-
der to form all allowed fine-structure eigenstates
(I.SP which then can decay radiatively within a
multiplet to lower states (I.,S)Z, . Under such cir-
cumstances S/I is only determined by the initial
irreducible spherical "orbital" density matrix
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components"" p, , which are constrained by reflection symmetry with respect to the yz plane:
= (- 1)'p, ~'~. " This leads to

(,)I JJ1 JJ1
(

0) 1 ' JJO ( JJ0
I

1 (2) 1 (2) ) JJ2I I JJ2 t
'l

I11J, LLS ( ' 3 11J, ILLS) 2 ' 24 " ]11J I

The four unknown p, components in this expres-
sion have been adjusted such that the measured
(S/I),„arebest reproduced by (S/I),~„„,calculat-
ed with a single set (p, ' = 1; p, ' = —0.5; p, ~'~

=0.2; p, ~'~ =0.15) for all lines in Table I. The
good agreement allows us to deduce from p, '
= —0.5 that a. unique orbital angular momentum
(-L„)is generated for all excited states in Table
I.

The large orientation obtained with this effect
suggests its use for level-crossing and magnetic-
resonance studies of excited ionic levels. In or-
der to demonstra. te such an a.pplication we show
in Fig. 3 the zero-field level-crossing (Hanle)
signals obtained for the 4p''F„,sta.te in the

0
4609-A emission. Following the above discus-
sion, a, treatment similar to Ref. 10 leads to the
expressions in Fig. 3 for the intensities at B=0
and B -~. Together with the deduced set of p, ~~~

components, these expressions account sufficient-
ly well for the measured intensities and explain
the asymmetry with respect to the broken cen-
ter line by the p, ' contribution from a finite
alignment' of the excited state. In principle, the
width of such Hanle signa, ls can also yield a val-
ue for the lifetime v of the excited state. How-

ever, the finite observation time due to the un-
known scattered-ion velocity and the observation
window leads to uncontrollable broadening (factor
-2 in Fig. 3) of the unperturbed line shape, so
that in the present geometry lifetime determina, -

I (B ) l(

2pppp I (o, B=O) = . 33p p
-. 5p, —.o p 0

+.13p
&

+ (p) (2)I(g,B- )= 3pp- 05pp

12000-

8000- Ia'
~yA

~000 -- &~~
I (a+, B=Q) =.33p + 45p" — 05p +.13p

Q
I I I I I I I I I I I

0 B, (T)

FIG. 3. Zero-field level-crossing signals for Io
right circularly polarized light, and Ia+, left circular-
ly polarized light. For the formulas, see text.

tions are not possible. But since this broa. dening
does not affect the position of high-field level
crossings (HFLC), this new technique can easily
be extended to HFLC measurements of fine or hy-
perfine structures of ions and offers there a, num-
ber of advantages owing to the indestructible na, —

ture of the targets, the large orientation, and the
large magnetic fields which can be used along z'
with minimal beam bending.

In conclusion we could show that the ions leave
the surface predominantly in the forward direc-
tion for small angles of incidence e, and that
aside from surface cleanness such small scatter-
ing angles 0 leads to large orienta, tions in many
excited states. Asuming LS coupling, we could
interpret all S/I values by the generation of a
uniquely oriented total orbital angular momentum,
—L„ofthe excited states by Coulomb interac-
tion with the surface. For a fuller understanding
of the excitation process, however, further exper-
iments with other ions, other excited-state con-
figurations, and targets with better-controlled
surface qualities are required. Such systematic
studies, including scattering angular and energy
dependences of S/I, could then also be applied to
the analysis of solid-state properties of the tar-
gets, an example being the pickup of spin-polar-
ized electrons" from magnetized media. As a
further application we expect this excitation
scheme to serve as a new tool in HFLC studies
in atomic physics.
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%e present a completely classical analysis of the small-signal regime of a free-elec-
tron laser. It is explicitly shown that the amplification is due to stimulated scattering
produced by a bunching of the electron distribution.

Stimulated emission of bremsstrahlung in a
transverse periodic magnetic field' has been re-
cently observed by Elias et a/. ' In this experi-
ment, a relativistic electron beam (E = @me

'= 24-
1VIeV) was passed through a tube centered within
a supereonducting double helix supplying a period-
ic static field. Amplification was achieved for
the stimulated radiation in the direction of the
electron beam. The stimulated emission of radia-
tion in a transverse magnetic field ha, s been ana-
lyzed by Dreicer, ' Pantell, Soncini, and Puthoff, ~

Madey and co-workers, ' ' and Sukhatme and
Wolff. ' All of these theories are quantum me-
chanical in nature. They give the impression that
they have to be so, since it is argued that it is
the electron recoil Ajl =8/X, where X ls the
Compton wavelength, which is the source of a. fi-
nite gain. Furthermore, quantum approaches,
while agreeing on the structure of the gain for-
mula, differ from one another by orders of mag-
nitude in numerical coefficients.

In this Letter, we show that this problem is
completely classical, and that the gain is pro-
duced by a bunching of the electron density in the
presence of a field.

In order to avoid difficulties in numerical coef-
ficients, we choose to work directly in the labora-
tory frame, and stay in a space-time description
of the problem. We use the Weizsacker-Williams
approximation, ' which allows us in the extreme
relativistic limit to replace the static magnetic

field of period ~, by a pure electromagnetic field
of wavelength

~, =(1+P)Z, = 2~„

We describe the motion of the electron distribu-
tion f(x, P, t) by the collisionless relativistic
Boltzma, nn equation'

«f af sf af—= —+x] +P] =0, (3)dt Bt ' Bx, '
BP&

where P is the canonical momentum, x the posi-
tion, and a dot expresses the total derivative with
respect to time. The total number of electrons
N(t) is

N(t) = J«3xf«'Pf(x, P, t). (4)

The Boltzmann equation is coupled via the trans-
verse current J~ to the Maxwell equations

+V A —e 8 A/st = —poJr,

where A is the vector potential, and

Jr(x, t) = ef«'P vr f(x, P-, t). (6

(5)

Here, e is the electron charge, and v~ the trans-
verse component of the electron velocity.

In order to simplify the set of Eqs. (3) and (5),
we now consider a model in which the electro-
magnetic field is transverse and depends on ~ and


