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Statistical Analysis of Feynman Diagrams
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The methods of statistical mechanics are used to evaluate sums of many-vertex Feyn-
man graphs in a simple quantum-field-theory model.

There has been much discussion during the past
decade of the function E,(a), the coefficient of the
logarithmically divergent contribution of the one-
fermion-loop Feynman diagrams to the photon
propagator in massless quantum electrodynamics.
It has been shown that the zeros of E,(a) are es
sential zeros (points where E, vanishes more
rapidly than any power of x)' and it is conjectured
that one of these zeros is the actual physical di-
mensionless charge on the electron (- », ). E,(n)
may be calculated in perturbation theory although
the calculation is difficult and only the first three
terms are known'.

E,(n) =3n +n' —~a'+

However, the location of an essential zero of
E,(a) is fixed by the radius of convergence of this
series; this, in turn, is determined not by the
leading orders of perturbation theory, but rather
by the nth term in the limit as n- ~. Thus, what
is really needed is a method for evaluating sums
of Feynman diagrams as n, the number of verti-
ces, approaches ~.

In this paper we introduce a novel statistical
method for analyzing the behavior of a Feynman
diagrammatic perturbation theory as the order
of the perturbation theory gets large. We exam-

ine the distribution of n-vertex Feynman graphs,
identify that class of graphs which contributes
most to the perturbation expansion when n is
large, and thereby determine the large-order
behavior of the perturbation theory. Although we
present these ideas in the context of a simple
quantum-field-theory model, we hope that ulti-
mately they will be useful for understanding such
problems as the perturbative structure of E,(n).

We have recently investigated the large-order
behavior of the perturbation expansions for some
quantum mechanical systems. ' ' In all cases we
have found that in large order, the structure of
perturbation theory becomes extremely simple.
For example, the ground-state energy E(X) of the
generalized quantum anharmonic oscillator, de-
fined by

d2
, +—+h. 2„-E(h.) y(x) =0,

y(+~) =0,

has a perturbation expansion of the form

We have shown that, apart from an overall mul-
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tiplicative constant and algebraic dependence on

n, '

In this paper we are only concerned with the fac-
torial and power growth of A„. The radius of con-
vergence of a perturbation series is not sensitive
to algebraic dependences so they are ignored
here.

Unfortunately, the behavior of A„ in (4) was de-
rived from a semiclassical analysis of the differ-
ential equation (2) so the methods that were used
are not applicable to the diagrammatic expansions
of quantum field theory. Nevertheless, the sim-
plicity of this result has led us to believe that it
is possible to deduce the large-order behavior of
a diagrammatic perturbation theory by direct
analysis of the diagrams.

We are proposing new and intuitive methods; it
is our purpose here to show that they actually
work for a problem whose solution is already
known. Thus, we will show how to rederive Eq.
(4).

The perturbation series for E in (3) has a dia-
grammatic expansion because E is the ground-
state energy of a cp'~ field theory in one-dimen-
sional space-time whose Hamiltonian is

H =a+ +2/ +X+

and whose equal-time commutation relations are

[g(t), p(t')]l g= g~
= I.

The ground-state energy E satisfies the equation

ei g.s.) =E(X))g.s.) .

A„, the nth term in the perturbation expansion
for E(X), is equal to the sum of all connected vac-
uum diagrams having n vertices.

The Feynman rules for computing A„ in mo-
mentum space are (2K)! for a vertex, I/(E' —I
+i@) for a propagator, and f (i/2~)dE for each
loop integration. In coordinate space the rules

are —,
' exp(- ~x; -xj ) for a line connecting the ith

and jth vertices, and we must integrate over all
but one vertex:

O ...jdx, dx, dx, . . .dx„,.
(The last integration fd x„gi ves a volume diver-
gence which reflects the time translation invari-
ance of bubble diagrams. )

After calculating several hundred bubble graphs
we find strong indications that the calculation of
A„ for large v is indeed a problem in statistical
mechanics. The factorial dependence [n(K —I)]!
in (4) arises from the overall number of graphs
and not from some special topological class of
graphs (like tower diagrams, for example). In
any number of space-time dimensions the num-
ber of vacuum graphs for a y'~ field theory is

apart from algebraic dependences on n.
Individual diagrams grow no faster than c",

where c is a. constant. It is possible to define the
value of an "average" graph by dividing the de-
sired answer in (4) by the number of graphs in
(3). For example, when Jt =2, the average graph
behaves like (~a)". Some graphs grow faster than
the average graph and some grow slower but aver-
age graphs dominate the perturbation expansion
as n- ~ because there are more of them; the val-
ues of all g-vertex graphs have a Gaussian-like
distribution which is sharply peaked at the value
of the average graph. '

We briefly describe the calculational procedure:
(l) We work in coordinate space and number

the vertices so that x; &x& when i& j. Ordering
the vertices in this way is not necessary but it
simplifies the presentation because the propa-
gator becomes the simple exponential —,

' exp(x;
-x, ).'

(2) We take the number of vertices large:
» 1. Then we group the vertices into N boxes„
placing n/N vertices in each box, as shown in
Fig. 1. We choose N»1, but N'«n. It is not
necessary to partition the vertices so that there

x! x2 x&. x„/N
e

"I+ n/N "Zn/N "n+!-n/N "n

BOX 1 BOX 2 BOX N

FIG. 1. Partitioning of vertices into boxes. We group the vertices into N boxes, placing n/1V vertices in each box.
The vertices are Labeled &~. . .&„.
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are equal numbers in every box. The nonequipar-
tition case gives identical results and is described
in Ref. 6.

(3) We view these boxes as having an unspeci-
fied internal structure but we do specify how each
box is (externally) joined to other boxes. The
number of lines connecting the ith and jth box,
where 1&i,j~ N, is given by the connectivity ma-
trix E(i,j), which is symmetric and has positive
integer entries. E(i,i) is twice the number of in-
ternal lines in box i. Since there are n/N verti-
ces per box, E(i,j) must satisfy the constraint
equation

diagrams in the class E(i,j).
To evaluate a Feynman integral for a diagram

in class I' we define the function

which is the number of lines one must cut to sev-
er the diagram at the kth box. Using the coordi-
nate-space Feynman rules, the value of a dia-
gram is simply

(8)

Q E(i,j)=2Kn/N
j= l

(6)

for all i.
(4) We have organized all diagrams into class-

es, with each class specified by the matrix (E(i,
j). We must therefore determine which of these
classes contributes most to A„ in (3) and (4). The
contribution of the class associated with the ma-
trix E(i,j) is erlual to the number of diagrams in
that class multiplied by the value of any one such
diagram. (All diagrams in any class have the
same value because we disregard the internal
structure of boxes. )

A counting argument shows that there are ap-

proximatelyy

f,'dxf (x,y) = l.. (9)

Using the Stirling formula Q!-Joe "o, where we
have discarded algebraic factors, we obtain an
expression for A„:

The contribution of class E(i,j) to A„ is just the
product of (7) and (8).

(5) Next, we pass to the continuum limit by in-
troducing the variables x =i/N, y =j/N, z =k/N,
and F(i,j ) = (2Kn/N') f (x,y ). f (x,y) is a symmet-
ric function whose arguments range from 0 to 1.
In terms of these variables, the constraint equa-
tion (6) reads

E -l]2
[(2K)!] "[(n/N) r]" g E(i,j) r (7) e -~rr(nK)~(s- s)2-nP 8 -nw[F] (10)

where the sum is over all classes E(i,j) and

W[E]=f dxlnf dxf dy f(x,y)+KJ dxf dy f(x,y)lnf(x, y).

Observe that all reference to N has disappeared.
(6) When n is large, we use Laplace's method' to expand the functional integral in (10) [again, the

sum is over all classes E(i,j)] and obtain

p &
- nw[a] - nw[g 0]

)

apart from algebraic factors. The dominant contribution to A„ is made by that class E, which minimiz-
es W [E] in (11). To minimize (11) subject to the constraint in (9) we introduce a Lagrange multiplier
X(y) and take variational derivatives with respect to X and f. We obtain an integral erluation for f,(x,y):

fo(s, t) =[f,(s, s)f,(t, t)]'I' exp[- (1/2K)~ j dz/f dxf dy f,(x, )jy].

(7) The simultaneous integral erluations (9) and (12) have an exact closed-form solution:

(12)

-A'(x)B'(y), x &y,
-A'(y)B'(x), x &y, .

(13)
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where A(0) =0, B(1)=0,

A(x) ' +B(x) ' =C

A'(x)B(x) B-'(x)A(x) = 1,

I( —1, Z [r QC/(Z —1))]'
M Z -1 r(2I('/(Z 1—))

(8) Substituting (13) and (14) back into the expression for W [E] and integrating by parts gives

W [Ii0] = —1 —2K lnC,

(14)

and substituting this result into (10) recovers the formula in (4) for the behavior of A„when n is large.
%e are currently working on extending these methods to higher-dimensional field theories and hope

to use them eventually to obtain the radius of convergence of E,(n).
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We rigorously prove that in three or more dimensions, the nearest-neighbor, simple-
cubic, ferromagnetic, quantum Heisenberg model of spin S (= ~~, 1, ~ ~ ~ ) has a phase tran-
sition at nonzero temperature.

The quantum Heisenberg model represents one
of the simplest models in which ferromagnetic be-
havior occurs. From a variety of intuitions in-
cluding high-temperature expansions' and spin-
wave apprpximations, ' it has been believed for
many years that the three-dimensional model has

a first-order phase transition in the magnetic
field at sufficiently low temperatures. Despite
its obvious physical interest, a rigorous proof of
this has not been available — -the only previous rig-
orous results on phase transitions in quantum lat-
tice systems are proofs of the absence of phase
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