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served by others is not due to some intrinsic
property of this quantum solid.

I am grateful to G. Ahlers for many helpful
discussions throughout the course of this work
and to P. A. Busch for technical assistance.
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FIG. 2. The Debye thetas for bcc He versus reduced
temperature. The numbers are the molar volumes in
cubic centimeters. The smooth curves were deter-
mined using the data of Castles and Adams tabulated in
Ref. 4 with 80 set equal to the maximum value of 8(T).

ture that has been reported on the basis of all of
the previous C ~ measurements' on bcc 'He.
The small decrease in e(T) in the present data
for T/6, S 0.008 is within experimental uncer-
tainty. Also shown in the figure are the smoothed
results of Castles and Adams which are qualita-
tively typical of the earlier measurements.

It is concluded that the present specific heat
data are inconsistent with the existence of the
long-standing low-temperature specific-heat
anomaly in bcc 'He and thus that the anomaly ob-
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It is shown that for sufficiently strong repulsive electron-electron interactions a quasi
one-dimensional conductor has a phonon anomaly with wave vector component 4k F and an
associated phase transition to a new kind of correlated charge-density wave state and
lattice distortion, which can account for recent x-ray experiments on tetrathiafulvalene-
tetracyanoquinodimethane. In the ordered state, the charge-density excitations are sol-
itons and there is a gap in their spectrum.

In this Letter, it is shown that there is a new
kind of correlated electron-phonon state in quasi
one-dimensional conductors which may explain

the 4kp phonon anomaly discovered by Pouget et
al. ' by x-ray scattering from tetrathiafulvalene-
tetracyanoquinodimethane (TTF-TCNQ). These
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experiments found one-dimensional scattering at
two wave vectors with components 0.295b* and
0.59b~, respectively. The first of these, which
had been observed previously, ' 4 appeared below
150 K whereas the second was still visible at
room temperature. In both cases there were
superlattice reflections at low temperatures. "'

Since a quasi one-dimensional conductor is ex-
pected to have a Kohn anomaly and a Peierls
transition' for phonons with wave vector 2kF

(where kF is the Fermi wave vector), it is a pri-
ori possible to imagine that either 2k' =0.295b*
and the new scattering is at 4kF or, alternatively,
2k& =0.59b* and the original scattering was at kF.
The explanation proposed here adopts the former
point of view and is consistent with the usual in-
terpretation of the earlier experiments. It in-
volves a correlated state of electron cIM,'rge-den-
sity &eaves, which is similar to the correlated
state of electrons occurring in the usual Peierls
transition. ' It differs from a previous suggestion
of Torrance, ' that in the strong-coupling limit,
there will be two phonon anomalies associated
with correlated electron states, one (at 0.295b*)
leading to a modulation of the spin density, and
the other to a modulation of the charge density.

The physical picture is as follows. In the usual
Peierls transition, a lattice distortion produces a
superlattice with reciprocal vector 2kF which al-
lows an electron to undergo umklapp scattering
from one Fermi point to the other. This process
mixes nearly degenerate states and the conse-
quent decrease in electron energy more than com-
pensates the increase in the elastic energy of the
lattice. There is a gap in the single-particle
spectrum. In a simila, r way, a 4kF lattice distor-
tion allows umklapp scattering of two electrons
across the Fermi sea, and it will be shown that
this produces a correlated state of the electron
charge-density waves and a gap in their energy
spectrum. Such a state is known to occur in the
case of a half-filled band'~ for which the recipro-
cal vector of the original lattice is 4kF. The new
feature is that the same effect may be achieved
by means of a lattice distortion provided there is
a sufficiently strong repulsive interaction between
the electrons. Coupling to the lattice is through
phonon modulation of the intersite Coulomb ma-
trix elements and the transition is preceded by a
phonon softening in the disordered state analogous
to the Kohn anomaly' at 2k&. The exclusion prin-
ciple forbids a similar process for OkF, 8k», etc.

These ideas mill now be expanded by consider-
ing an extension of the model of Luther and Em-

+2i 'E~p|x(k)p. x(-k) (2)

and

x ( U|i b„,. + V|b, ,c),

constitute the model of Luther and Emery" for
uncoupled chains. Here v F is the Fermi veloci-
ty, a„, ~ and b, , ~ annihilate spin- —,

' fermions
with momentum k on the Ath chain, and [p, ~(k),
g„~(x)] and [p,~(k), g„~(x)] are the corresponding
electron density and field operators defined in
Ref. 10. The third term in X is the free-phonon
Hamiltonian and the fourth is the large-momen-
tum part of the electron-phonon coupling which

may be imagined to arise from phonon modula-
tion of hopping and intersite Coulomb interac-
tions:

&.&=g.E~ jdx@',~(x)q(x)

+g, Qy fdx +,~(x) y(x) +H.c. (4)

Here y(x) is the phonon field, "and

~»(x) =Z. 4&.~'(x) 0.,~(x)

and

ery. " First it will be shown that for independent
chains, the relevant four-particle correlation
functions diverge at low frequencies for zero tem-
perature and momentum transfer 4kF. This indi-
cates that there will be a phase transition in a
system of coupled chains" and a phonon conden-
sation when coupling to the lattice is introduced.
To explore the nature of the condensed state, it
wi11 be shown that the Hamiltonian may be trans-
formed to a Frohlieh Hamiltonian which forms
the basis for the discussion of the usual Peierls
transition. ' In this way the 2kF and 4kp transitions
will be put on the same mathematical footing. It
will be seen that the charge-density wave excita-
tions in the condensed state are quantized soli-
tons. Finally, the application to TTF- TCNQ will
be discussed.

The Hamiltonian is

= +,++~++~++,p+&

where the first two terms,
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C2g(ar, 2kF) -(u~ ', R &1,

-constant, B & I,
(8)

when IU&l Ujj, for which Ujj and Uj renormalize
to zero' at T=O. [This is the case of interest
when U„-Wjj since Wjj &0 if C j,(~,4kF) diverges.
A full discussion of the singularities of C, q(&u, 2kF)
for different values of IVI~, Ut~, and U~ mill not be
given here. ]

Equation (8) shows that C, q(~, 2kF) diverges and
there is a 2kF phase transition for arbitrarily
weak interchain coupling when R &1 (i.e., when

Wjj
& 0) . Similarly C, q(~, 4kF) diverges and there

is a 4k& phase transition when R & —,
' (i.e. , when

Wj, & —',) and it diverges more strongly than C, j,(cu,

2kF) when R& 3, i.e., when Wj &-, . (In either case
there can be transitions when the correlation
functions do not diverge if the coupling is strong
enough. ) It is important to realize that, even if
S'~~ &-', , the 2k& transition may well take place at
a higher temperature since the 4', q order param-
eters a,re coupled in lowest order in the inter-
chain Coulomb interaction whereas the 44q order
parameters are not.

A divergence in C4(&u, 2kF) will also give rise to
a lattice distortion when the electron-phonon

are operators which take one or two particles
across the Fermi sea. To simplify the discus-
sion, umklapp processes and small-momentum
phonons have been omitted and the electron-pho-
non coupling is taken to be constant in momentum
space. The Coulomb interaction between elec-
trons on different chains is given by X,,

First consider the possibility of phase transi-
tions in the coupled chains in the absence of pho-
nons. This requires" divergences in the Fourier
transforms of the correlation functions C, q=
(+,y (x, t)4', q) and C, q = (4,'z~(x, t) 4', q) of the indi-
vidual chains (R,~=O and K,,=O). These functions
may be evaluated directly by the use of a boson
representation of 4, q and 44q as described in
Refs. 8, 10, and 13. Since 4, q(x) contains the
spins in a symmetric way, C~q(&u, 4k') involves
only charge-density wave excitations and, if the
band is not half-filled, it is a Luttinger-model
correlation function" given by

C4g(&u, 4k ) -(u4 ' R& —'

-constant, B& q,

for low frequency and T =0. Here R =(2-Wjj)' '/
(2+ Wjj) W=(2V-Ujj)/vvF (in the notation of
Ref. 8). The evaluation of C,y(&u, 2k, ) is de-
scribed in Refs. 8 and 10 and yields

coupling is taken into account. In order to see
this without relying on any particular approximate
method of solving the coupled electron-phonon
Hamiltonian, it will now be shown that the 4kF in-
stability problem can be transformed into an ef-
fective Frohlich Hamiltonian for spinless fer-
mions. In this way, the complete analogy between
the 2k& and 4k' instabilities will become clear and

any method of calculating the properties of one
can be applied to the other. To simplify the dis-
cussion, set g, =0 in Eq. (4) and omit X„ for the
time being.

If jjjj(x) were replaced by e ' ", which is a c-
number, 3:,~ [defined in Eq. (4)] would become
identical to the umklapp-scattering part X„of
the Hamiltonian solved by Emery, Luther, and
Peschel8 [see Eq. (4) of Ref. 8]. The method of
solution was to use a boson representation of
fermion operators to show that the charge and

spin-density parts of X~ +X~ could be diagonal-
ized separately by means of a canonical trans-
formation. For lV

l~
=-,', 44~ became a bilinear

form in spinless-pseudofermion operators which
were constructed from charge-density waves.
This entire argument made no use of the fact
that y{x) was a c-number and it can be carried
through in the same way when y{x) is a phonon
field as in Eq. (4). Following the steps which led
to Eq. (9) of Ref. 8, the charge-density wave part
of R (which contains R,~) may be written

Ec F Z ( yk yy dye dye)++p
a, X

+2
' f dxg. ( )g, (x)q(x)exp(2ik, )

+ H.c. (9)

Here eF'=-, vF; c» and d, ~ are annihilation oper-
ators for the pseudofermions and (,~(x) and jIj„~(x)
are their respective Fourier transforms, and y is
a cutoff. In Eq. (9), R~c is the Frolich Hamilto-
nian for spinless fermions with a linear spectrum,
and it leads to a Kohn anomaly and a Peierls tran-
sition in the usual way, ' except that the additional
factor" exp(2ikFx) shifts the singularities to pho-
nons of wave vector 4kF. Physically, the conden-
sation and the energy gap refer to the charge-den-
sity waves rather than the original fermions. In
the mean-field theory of this transition, the
charge-density waves satisfy the quantized sine-
Gordon equation and the energy gap is the mass
a,ssociated with the soliton excitations. '

%hen 5'll 4-,', it is possible to carry out the
same transformation but, inR~c, the Fermi ve-
locity becomes v„'+(-,' —SWjj/8m'„)vF and there
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is an additional small-momentum-transfer inter-
action

-'I '(W„—6 V /5)g„p, (h)p z(-h).
For g, =0, the correlation function of (,„t(x, t)
x(s~(x, t) is identical to C, (as it should be) and
the previous conclusion that the 4kF instability
occurs when W~~) —,

' is equivalent to the statement
that the Peierls instability requires repulsive
interactions in the Luttinger model. "

Thus it appears that the existence of phonon
anomalies at 2k F and 4k F have a similar mathe-
matical basis and both should be seen if the elec-
tron interaction is sufficiently repulsive. The
mechanism for a 4kF phonon anomaly and lattice
distortion which has been described here may ac-
count for the recent x-ray experiments' on TTF-
TCNQ. In any case it might manifest itself in
other quasi one-dimensional conductors. For
TTF-TCNQ, measurements of the susceptibili-
ties of the individual chains". suggest that the
electron interactions are repulsive on TTF and
attractive on TCNQ (extrapolating )(s and )(o from
T& 54 K gives Xs finite and )(&=0 at T =0). If so,
the 4k F anomaly would appear only on the TTF
chains and would be related to a correlated hole-
phonon state. Since the 4kF anomaly appears at
the higher temperature, the interaction is quite
strong.

Ultimately, both 2kF and 4kF phonons should
condense although, as mentioned earlier, the
2kF transition may well occur at a higher tem-
perature. At present it is not easy to carry out
a reliable microscopic calculation of the circum-
stances in which the distortions coexist. If sym-
metry allows, the 2k, distortion will act as an
external field driving the 4kF mode and, in that
case, as the temperature is lowered, the devel-
opment of intrinsic 4k F order will be similar to
that of a ferromagnet in a magnetic field. "

Other four-particle correlation functions gen-
erated by (, , ~P. ..tg. ..g, , and by p, , "q,
xg, , tg, ,t have been evaluated" and implica-
tions of divergences have been worked out along
the lines described here for C4. This will be
described in a separate publication.

I am grateful to Dr. R. Comes for describing
his experiments to me before publication and for
extensive discussions of the physics of the 4k F
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Dr. P. Ba,k.
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