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Magnetic field perturbations accompanying the tearing instability allow rapid heat trans-
port across regions enclosing mode-rational equilibrium flux surfaces. The electron-en-
ergy transport equation for this process is derived, under the assumptions of cylindrical
geometry„'incompressible flow, and relatively weak density gradients. For the thermo-
electric instability predicted by kinetic theory, a quasilinear description of local flatten-
ing of the temperatures profile is obtained. The self-consistent field perturbation is
shown to be quite weak, Q3/B&- 10 4; yet it yields a localized heat flux far exceeding
pseudoclassical estimates.

Soft x-ray measurements on tokamaks have dis-
closed rapid radial heat transport, associated
with small-amplitude magnetic field perturba-
tions. ' The frequency of the observed small-am-
plitude oscillations is close to co+, the electron
diamagnetic frequency. Thermal transport across
the q = m surface (here q is the Kruskal-Shafra-
nov safety factor and nz = 1,2, 3 is the poloidal
mode number) is experimentally indicated by a
flattening of the electron temperature profile
over a small annular region, enclosing the q = yn

surface. The temperature perturbation appears
nearly uniform over the equilibrium flux surface.

Under some conditions the oscillations are fol-
lowed by abrupt disruption of the plasma column~ process which shall not be considered here.
We restrict our attention to the relatively mild
perturbation in T„which should be amenable to
a quasilinear treatment. Because the m= 1 case
is more complicated both experimentally and the-
oretically, we also restrict our attention to modes
with m ~ 2. We use a cylindrical geometry, and,
noting tha. t

n'/n «T, '/T,

(here n is the density and the primes denote radi-
al derivatives) at radii of interest in most of the
relevant experiments, we neglect the density
gradient for simplicity. With these assumptions,
a,nd using the results of a previous study of linear
tearing instabilities, we derive a self-consistent,
quasilinear description of localized flattening of
the temperature profile.

%e begin with the exact electron energy conser-
vation law':

(8/St)(2nT) + V ~ (2nTv) +nTV ~ v

+(V V) ~ v+V ~ q=Q,

where n and T are the electron density and tem-

perature, respectively, v is the mean electron
flow velocity, V is the stress tensor (in the sense
of Braginskii'), q is the electron heat flux, and Q
is the collisional energy exchange between elec-
trons and ions. The terms involving p, q~, and

Q (proportional to m, /m;, or to the square of the
gyroradius) are easily retained, but their effect
turns out to be negligibly small compared to the
transport associated with q2 =B q/B and v. This
is because, in long-mean-free-path regimes of
interest, tearing instabilities allow radial heat
transport along the magnetic field which easily
dominates neoclassical, or even pseudoclassical,
effects. The omission of V, q~, and Q, which
can be rigorously justified only a posterion [cf.
Eq. (20)], is closely analogous to the neglect, in
classical tearing instability theory, "~ of terms
describing resistive diffusion of the equilibrium
magnetic field. %'e also assume incompressible
flow. Then Eq. (1) reduces to

2n, (&T/&t) +2n,v VT+ B V(q~, /B) =0.

Here we have replaced n by its equilibrium value,
n„because our neglect of V'n and the incompres-
sibility assumption imply that the density is un-
perturbed. In the same approximation, v VT
=v~ ~ VT, where v~ is the electric drift; the dia-
magnetic drift does not enter Eq. (2).

The parallel heat flux is assumed to obey the
transport equation, '

~12le+li +n V 2p] I'22V [[T

where p =nT E2 is the perturbed parallel elec-
tric field, and the transport coefficients I „may
be written as

I. „=(p~/m, )X „((o~).

Here v is the electron collision time of Bragin-
skii and the A. „depend upon the wave frequency,
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+, as shown in Ref. 2.
In cylindrical coordinates (r, 8,z), with B,

= 8Be, +zB„, and B, VT, = 0 = vz„ the Iineariza-
tion of Egs. (2) and (3) is straightforward. We
find that the linear temperature perturbation,
T,(r, 8,z), is given by

T, = —)To' + s (k, ) /(ono)q)) ~

Substituting this expression into Eg. (3), we ob-
tain

where

(ur, =- —(c/eB) (m/r)T, ',
(u „=—(c/eB) (m/r )I','/n.

For typical tokamak parameters (n = 10"cm ',
r '= 10~ sec '), y/v„™10 ', so we approximate
for y/&u„«1. Then the transport coefficients in
Eq. (9) are nearly real, and

ik
)) 5 I '/Ik I

')

kq, )
= —(b —ik)) $)L,T,' —L„eE)). (6) x (L,T'+L„e(u„r/m, ).

Here we use the notations

$ = $1fz~/(d, b=B „/B, L L, +L—
k ))

= (m/r)B e, + (I/R )Bg„k—= 1+ p ik ))L,/(u n, .

—n, +——r[-', (ez„T,) +(bq, ))]=0,3 a(Tg

where

(f) = $(d8/2w) f,
and we have noted that, for any vector A, (V A)
=r '(r(A„))'. According to Eq. (5),

The prime denotes a radial derivative. To com-
plete the linear description, we use the radial
component of Faraday's law, together with the
tokamak ordering Be/B, «1 and the identity E
= —v~&& B+Etl, to obtain the familiar relation~

E
))

= ((orB,/rn c ) (b —ik)) g),

where m is the poloidal mode number.
A quasilinear description is obtained from the

second-order version of Eq. (2), averaged in 8.
Treating aT,/at as second order, we have

After substituting this expression into Eq. (8),
and using Eg. (10), we obtain

aT/at =r 'a(rz„T')/ar,

where (using the X „ from Ref. 2)

~. = n'/m. )lb. l'/lkl',

with

(12)

bg = b —ik)) $.

The quasilinear description is completed by as-
suming

„lb.—I'=2yl b.l', (13)

where y is given by (11).
It is important to notice that the quantity b+,

unlike b, becomes small outside the tearing lay-
er. For this reason, and because of the Ikl

' fac-
tor, the thermal conductivity is localized to a
narrow annular region enclosing the A ll=0 sur-
face. Within this region, however, we shall see
that v~ is enormous, even for very small mag-
netic perturbations.

The spatial structure of x~ may be represented,
approximately, by'

ln.(~z, T,&+(bq))& =((b —ik)) &)q))&

——,'T, 'I (I'Im(u,

where Egs. (6) and (7) provide

(b —i k$))) q=))k'(b —ik-„$)'

x [L,T' + (e&urB,/mc)L„]. (9)

y, ~ (1+x'/5') ' exp(- x'/1). '), (14)

(16)

r =—Re~ = e~ + 0.8w ~~,

y—= Imu) = (0.43)()dr„v))d„,

(10)

(11)

Before evaluating the 8 average of Eq. (9), we
specialize to the "thermoelectric" instability
which was emphasized in Ref. 2. In the param-
eter range of interest, this mode is character-
ized by

Here yp is the radius of the mode-rational sur-
face, k)) (ro) =0 6 =[ (bra)+l. ) b(ro A. )]/b(r )a0nd
7'A is the Alfven time. For consistency with the
experimental observations, both ) and 5 should
be of the order of 1 cm. We evaluate these lengths
for the case of a locally flattened temperature
gradient; to keep e~ nonzero, the small density
gradient term in ~~ is retained, using the esti-
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mate n' =n/5a. Then, with B= 104 0, n=10'3
cm ', 7'=10' eV, a=10 cm, g, =5 cm, m =2
and b, 'a =20,5 we find from Eqs. (15) and (16) that
both X and 5 have the desired magnitudes, pro-
vided that

kii'« = (mItBe/rB, )'a~ ~5. (17)

This value is quite small, and yet not inconsis-
tent with some estimated tokamak current pro-
files. ' Our theory thus predicts that anomalous
thermal transport occurs over observably wide
regions only if the shear is locally small.

We now consider the solution of our quasilinear
equations. The growth rate of the linear mode
depends on the temperature gradient, T'. As the
mode grows, z~ increases and 7' decreases, un-
til the mode saturates by locally flattening the
temperature profile. We can calculate the satur-
ation amplitude quite simply, using a conserva-
tion law which was derived for analogous quasi-
linear equations by Wong. ' From Eq. (12) we ob-
tain

st .' m, )h)'

where the integral extends over the larger of the
two radial distances, A, or 5, and we have noted
that

)

b„i/ibad

becomes small at the integration lim-
its. We see from Eqs. (11) and (13) that the in-
tegrand on the right-hand side is proportional to
Bib~i'/st Thus, neg. lecting the time variation of

we find

fdr r(sT'/st +o. Bid, i'/st) =0, (18)

where

~ '=(c~/eBr)'~. l&l'/T.

Equation (18) has been found useful in numerical
studies of the quasilinear system, ' but here we
use it only to estimate the saturation amplitude
of fbi. Evidently, ib+i'-a 'fdrraT', where

aT'=T'(t = ~) T'(t =0), —

- 2 (A./a) T'(f = 0),

assuming that an initial, locally linear, temper-
ature profile is flattened in a layer of width X,

Then

/&i
- I&. l

- (~a, /r)(&/aP', (19)

where p, is the electron gyroradius. For the pa-
rameters given above, this yields iB,„/BJ= 3
x 10 4. Even at this small amplitude, the local
thermal conductivity is very large; from the def-
inition, and using the tokamak parameters listed
previously, we find that Eq. (19) yields

@~=10KNc& (20)
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where I(.'Nc is the corresponding coefficient ob-
tained from neoclassical theory.

In order that our quasilinear description be val-
id, mode-mode coupling should be weak when the
mode saturates. Mode-mode coupling becomes
significant when the island width is comparable
to X'; this criterion is only marginally satisfied
at the saturation amplitude of Eq. (19), but should
be well satisfied during most of the quasilinear
evolution.

We note that because z~ is so large, the re-
quirement of small shear can be considerably re-
laxed. If we consider that ~~ dominates ~~c over
a width of several tearing layers (which is of
course small compared to the plasma radius),
we can allow smaller A and 5, hence larger k~i'.

We wish to thank H. V. Wong for helpful discus-
sions.
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