
VQLUME $6 26 APRIL 1976 NUMBER 17

Particle Creation by Gravitational Fields
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This paper presents a new and generally covariant approach to quantum field theory in
curved space-time. Previously unknown expressions are obtained for particle creation
amplitudes in oscillating gravitational fields. These expressions illuminate the physical
origin of the particle creation.

Recent work'"' on particle creation by gravita-
tional fields has raised, but not answered, the
question, "To what extent is it possible to make
sense of the occupation-number formalism in a
curved space-time?" By analogy with the behav-
ior of charged particles in external electromag-
netic fields, a gravitational field will start spon-
taneously creating particles of rest mass m when
the space-time radius of curvature ~ becomes
comparable with the Compton wavelength' 8/mc
(the term "radius of curvature" is used loosely
to denote any length scale associated with the
gravitational field). When r &h/mc, the creation
rate is damped by a factor exp(-mcr/ h) Th-us.
one expects the occupation-number formalism to
make sense when r» 5/mc but to break down
when r- 5/mc.

For massless particles, there is a satisfactory
asymptotic formalism. ' ' For massive particles,
no covariant answer is known (even in the static
case, there are severe problems' ).

In this payer, the occupation-number formal-
ism is introduced by replacing the plane waves
used in flat space-time by JWKB waves. For the
JWKB waves there is a natural distinction be-
tween positive and negative frequency, a distinc-
tion which leads to generally covariant (but inex-
act) definitions of vacuum states and of particle
creation and annihilation operators in weak-field

regions of space-time. The particle concept im-
plied is the classical one and the ambiguity in the
definition of the vacuum state corresponds pre-
cisely to the physical uncertainty caused by parti-
cle creation. Further, by examining the way in
which the J%'KB approximation breaks down as r
decreases, it is possible to extend some of the
techniques of perturbation theory which are fa-
miliar from flat space-time. This is illustrated
by a computation of the threshold amplitude for
pair production in a weak, but highly oscillating,
gravitational field.

Consider a massive Hermitian scalar field op-
erator 4 satisfying the Klein-Gordon equation
(hereafter, we take c = 1)

O' C~+ m'0 =0,

in a curved space-time M. Suppose that o is
some Cauchy hypersurface' and that V is some
region of space-time containing o. If the radius
of curvature in V is very much greater than the
Compton wavelength 5/m, then the classical
Klein-Gordon equation can be solved in V in the
JWKB approximation (that is, ignoring terms of
order 5') by y =p exp(iS/8). Here S satisfies the
Hamilton-Jacobi equation' V"SV„S= m' (so that
T"=I 'V~8 is tangent to a timelike geodetic con-
gruence) and p is a slowly va, rying amplitude sat-
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isfying

T V~p+2pV~T =0, (2)

A short calculation gives

P„„=(4N) 'f [(p,ap, +p„. p„) e"""]d

g = g+ +( +0(8),

where g is a linear superposition of positive-
frequency JWKB waves of the form

(3)

q+= J, q(k) p»exp(iS»/a)d'k, (4)

Here S„, keR', is some fixed three-
parameter family of solutions of the Hamilton-
Zacobi equation (with each V S» future pointing)
and p„ is some corresponding family of (suitably
normalized" ) amplitudes satisfying Eq. (2) [ex-
pressions like Eq. (4) can be manipulated in much
the same way as Fourier integrals, using the
method of stationary phase: see Hormander"
and Duistermaat"]. A different choice of S» will
result in a different decomposition, but it follows
from the principle of stationary phase that the
two decompositions will agree in the zeroth or-
der in O'. Thus one can use Eqs. (3) and (4) to set
up a Fock space for 8, and to define an (approx-
imate) vacuum state for the system in V.

Now suppose that M contains two Cauchy hyper-
surfaces o, and o, (with o, to the past of cr,) near
which the radius of curvature is very much great-
er than li/m while between a, and o, there is
some finite region 1V in which there is a highly
oscillating gravitational field.

Near o, and 0„ the JWEZB wave functions y„
= p» e x(pi S»8/)satisf'y Eq. (l) (up to terms of or-
der iI'), but in the interaction region W this ap-
proximation is not valid. Thus, if one decompos-
es an exact classical solution of Eq. (l) in the
form (3) near v, and near v, the results will be
different and the two vacuum states,

~
0, ) near o,

and ~0, ) near o„will be related by a nontrivial
Bogoliubov transformation. "" If the transforma-
tion coefficients are small" then (up to phase)

~0,) = (0,)+J,P» a» a» (0,)d'kd'k',

where P»». = (i/2)Q($», P»i) and a» and a»t are the
creation operators for y» and y»i Here g». and

$»1 are exact classical solutions of Eq. (l) with

g» =y» near o, and g»i = qr»i near o, and 0 is the
standard symplectic product for scalar fields. "

If T is future (past) pointing then p will be called
a Positive- (negative-) frequency ZWKB wave

A general (classical) solution P of Eq. (1) can
be decomposed (approximately) into its positive
and negative frequency parts in V by writing

(6)

where d~ is the metric volume element and 2S
=S»+S»i. This can be interpreted as (half) the
amplitude for creating a pair of particles with
wave functions y~ and y„. near o, .

The physical content of Eq. (6) is illustrated by
a computation of the pair production in the thresh-
old limit, that is when V„(S» S»-i) is small com-
pared with V„S, so that most of the energy of the
pair is in the two rest masses. It follows from
the equation of geodesic deviation" that, for each

D» 8» = —2o'» - 8»'/3 -R~sT»"T»

where TI, = m 'V S~, D~=TI, V, 8~ =V T~, and
o~ is the shear of the T, congruence. With this,
the highest-order contribution to P»i is found to
be

P»» =(4ih) 'f [p,p„R ST"T~ exp(2iS/ii)]d~,

(8)

where T = m 'V"S. This has two promising fea-
tures. First, the dominant term involves only
the Ricci curvature: As in electrodynamics, to
the first order of approximation, it is the source
of the external field which creates particles.
Pure gravitational radiation (with R„&=0) has a
much smaller effect, contributing to the oscilla-
tions in Gp~ and Gp, i only by first shearing the
two geodetic congruences. Secondly, to have any
particle production at all (in this order of approx-
imation) the function R &T"Ts must contain com-
ponents which oscillate like exp(-2iS/k); that is,
the gravitational field in 1V' must contain frequen-
cies greater than 2m/I (again, as in electrody-
namics).

A number of technical matters will be dealt
with in more detail elsewhere using geometric
quantization theory" —in particular, the global
behavior of the JWKB wave functions, the pre-
cise meaning of Eq. (4) (it is, in fact, a BKS
transform'"" from the wave function space of
the polarization defined locally by S»), and the
extension to particles with spin (the geodetic con-
gruences are then replaced by congruences of
Papapetrou traj ecto ries") .
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Differences in the approach to scaling of neutron and proton structure functions should
result from the mass splitting of SU(6) multiplets. I verify the existence of this effect
and use it to extract from recent data the form of the scaling structure functions. These
functions are found to vanish at x =1 as (1-x)3 with a ratio F„(x)/F~ (x) of 4.

Deep inelastic scattering experiments' provide
information on the null-plane' (or infinite-mo-
mentum) wave function of the nucleon. If the im-
pulse approximation of the parton model' were
exact, this information could be summarized in
terms of scaling structure functions4

E(xo) = lim E(xo,q'),
Q ~co2

where xo is the usual Feynman scaling variable
2 tvx, =(o, = —q g'2m„v. (2)

x„=~„=~, -M,'q .1 ' 2/ 2

To extract scaling structure functions from data
at moderate q' it is necessary to parametrize the
q' dependence of E(xo,q'). A simple phenomeno-
logical form for this dependence was suggested
by Bloom and Gilman' in terms of a variable x~
given by

At finite q' one approximates E(xo,q') in the form
E(x„).

Initial fits using this variable indicated the fol-
lowing general features: (i) Neutron and proton
data were consistently fit with M = m& =0.88
GeV'. (ii) Both neutron and proton data seemed
consistent with the behavior

E(x) - (1-x)'

for x near 1, as had been predicted on the basis
of the parton model by Drell, Yan, and West. '
(iii) The neutron/proton ratio E„(x)/E~(x) seemed'
to fall toward —,

' as x approached. 1. This last re-
sult seemed surprisingly inconsistent with the
SU(6) prediction E„(x)/E~ (x) --,' as x - 1. In a pre-
vious paper, ' however, I have argued that the
SU(6) symmetry breaking effects which split the
masses of the nucleon and the b,(1232) resonance
modify this prediction from ~3 to —,

' and account for

1001


