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Earlier we used annealing temperatures exceeding
800'C. This did not lead to junctions showing the pro-
nounced temperature dependence of the current. Cf.
G. Baum, E. Kisker, A. H. Mahan. , and K. Schrbder,
to be published.

This is concluded from the field-emission pattern
which exhibits a threefold symmetry if the tip is (111)
oriented and a twofold symmetry (a rectangular pat-
tern) if the tip is (110) oriented. A comparison in
size of the W-EuS emission pattern with that of W,
made by scaling the external magnetic field proportion-
al to the square root of the extraction voltage (to in-
sure equal electron optics), also agreed with this as-
signment. We do not yet know to what extent epitaxial
growth is essential for the layer formation.
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~OTypically the polarization vector P has an angle of

about 80 with respect to the tip axis at low magnetic
field. When a stronger magnetic field is applied, the
direction of P turns longitudinally; typically an angle
of 10 to the tip axis is observed in a field of 0.5 T.
The dependence of current and polarization on external
field strength is currently under investigation. At high
field strengths a higher polarization as well as an in-
creased emission current has been observed.
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It is argued that a black hole can remain in thermal equilibrium with a heat bath even
in the presence of particle interactions. This is achieved by proving the identity of the
Hartle-IIawking Feynman propagator and a certain thermal Green's function.

Hawking" has discussed the problem of parti-
cle emission from black holes using quantum
field theory on classical background geometries.
He has shown that if the particles do not interact
among themselves, then the probability for the
emission of a particle of energy E relative to in-
finity, in a state s, from a Schwarzschild black
hole of mass M, P,(E, s), is related to the proba-
bility of absorption by the black hole from that
state, P.(E, s), by

P, (E, s) = exp [-8nME]P, (E, s)

(in units such that G =c=h=k= 1). This is, by
the principle of detailed balance, a sufficient
condition for the black hole to remain in thermal
equilibrium with a heat bath of temperature

T = 1/871M.

Because of the basic nature of this latter re-
sult, one would expect that it would remain valid
in the presence of particle interactions even
though Eq. (1) would no longer do so. This is es-
pecially important since the regime in which the
Hawking process is of observational significance
is that of possible miniature black holes formed
in the early universe, "for which T-10"K and
the emitting region is -10 "cm where strong
interactions are obviously significant. In this
Letter, we shall show that to all orders of per-
turbation theory for any renormalizable interac-
tion, a nonrotating, neutral black hole can indeed
be in thermal equilibrium with a heat bath at a
temperature given by (2).

For simplicity we shall restrict our attention
to a neutral scalar field q, mass m. We enclose
the black hole in a box with perfectly reflecting
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walls. For a small enough box (but not so small
that it would be crushed by tidal forces), the to-
tal energy in the field will be negligible compared
with the mass of the hole. We may treat y as
propagating in a fixed Schwarzschild background.
There are now two approaches that one can take.
Either one regards the problem as the creation
of asymptotic particles from an initial no-parti-
cle state, or one considers a grand canonical
ensemble of states of the field, from the point of
view of an observer far from the hole. In both
cases one constructs an appropriate propagator
for the noninteracting fields, and uses it as the
basis for a perturbation calculation of the inter-
acting fields, for instance by setting out the
Feynman-Dyson rules. In the first case, the ap-
propriate propagator is the "Feynman Green's
function" which has recently been calculated by
Hartle and Hawking using the path-integral ap-
proach. ' This describes fluctuations about the
vacuum state. In the second case one would con-
struct the "thermal Green's function. ""This
describes fluctuations about a system in thermal
equilibrium at a temperature T. The point of our
proof is to show that these two functions are one
and the same thing.

The noninteracting Feynman propagator adopted
by Hartle and Hawking is defined by

G„(x,x') =t lim f exp(- tm'W- c/W)
f -+0+

xE(W, x, x') dW, (3)

and

Z(W, x, x')

= f5 ix(so)] exp[f ctg(x, x)dto]. (4)

The second integral is over all continuous paths
with parameter 0 & se & F from x to x'. In order
to give definite meaning to (4) it is necessary to
analytically continue to complexified coordinates
x and x'. GF(x, x') then becomes the boundary
value of that complex solution of the inhomogene-
ous Klein-Gordon equation which satisfies

reflecti-

ngg boundary conditions at the surface of the box,
and which is analytic in Kruskal coordinates ex-
cept for those pairs of points which may be con-
nected by a null geodesic, or a curve comprised
of null geodesic segments which reflect off the
surface of the box. The Kruskal advanced and re-
tarded time coordinates, V and U, are related to
the Schwarzschild coordinates y and t in the ex-

terior region by

(6)

G r(x, t; x', t')

=iTr [e "v(p(x, t)y(x', t)] /Tr e

= iTr Ie 8 "Tcp(x, t)e s "e 8 "y(x', t')] /Tr e

=aTr [e "Ty(x, t+aP)y(x', t')J /Tr e

=G,(x, t+iP; x', t'),
since

cp(x, t) = e 8 "y(x, t —ip)e s", (10)

where we have used the invariance of the trace
under cycle permutation. Hence Gr(x, x') is per-
iodic in t —t' with period ip =i/T, analytic in

This implies that GF(x, x') is periodic in the
Schwarzschild time coordinate differences t —t'
with period 8mMi and has singularities just above
and just below the real t —t' axis corresponding
to the null geodesics mentioned above.

The noninteracting thermal Green's function
Gr(x, x') describes the state of thermal equilib-
rium with respect to observers outside and at
rest with respect to the black hole. Such observ-
ers may describe their observations in terms of
the static Schwarzschild coordinates t, y, I9, y.
The function is given by

G r(x, x') =i(~y(x)y(x')).

v is the Wick time-ordering operator and () de-
notes the average over a grand canonical ensem-
ble, i.e., for any operator A,

(A) = Tr(pA)/Trp .

p is the density matrix, which for our problem
may be taken to be diagonal in a basis of nonin-
teracting many-particle states described by the
classical solutions of the homogeneous Klein-
Gordon equation of the form

e '"'y(r, 8, q),

satisfying reflecting boundary conditions at the
walls of the box. The diagonal elements will
then be exp(-E/T) where E is the total energy,
relative to infinity, of the state, and T the tem-
perature of the enclosure.

Applying the usual formal arguments to the
analytic continuation of Gr(x, x'), we see that
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the strip e& Im(t- t')& I/T- e, and satisfies the
inhomogeneous Klein-Gordon equation. In order
to give precise mathematical meaning to (5}we
may regard these conditions as defining Gr(x, x').
It is clear that for the choice T = I/BwM, GF(x, x')
and Gr(x, x') are identical. This establishes com-, .

pletely the thermal character of the emitted ra-
diation in the noninteracting case.

Now when interactions are present one wants
to find the various "n-point functions" in which
all the physical information of the theory is con-
tained. These may be obtained in a perturbation
calculation in which one uses the noninteracting
propagator as the 1owest-order approximation.
From the thermodynamic point of view, one
seeks expectation values over the grand canoni-
cal ensemble using the Hamiltonian (relative to
an observer at infinity) of the exact theory.
From the Feynman-propagator point of view one
seeks the amplitudes for various processes in
which particles travel from initial points x„x„
. . . , and arrive at final points x, ', x, ', . . . . Since
one starts from the same zeroth approximation
the end results will be the same. Indeed, the
general periodicity properties will still be true
of the exact propagators.

More details and the straightforward general-
ization to fields of higher spin, and to the case
of rotating and charged black holes, will be the
subject of a future publication. However, we

mention here that for fermions, the Green's func-
tions mill be antiperiodic in t —I, ", and that for ro-
tating and charged black holes the Green's func-
tions will be quasiperiodic in t —t'. There also
seems to be no obstacle to extending these re-
sults to other space-times containing event hori-
zons. '

The arguments presented here also provide a
partial justification for the heuristic hydrodynam-
ical model adopted by Carter, Lin, and the pres-
ent authors to discuss the emission process in
the high-energy limit. '

We should like to thank S. W. Hawking for help-
ful discussions.
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