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The low-frequency stability of a field-reversed ion ring/layer of large Larmor radius
in a background plasma is treated by a generalized form of the ‘“energy principle.”

Recent advances in the production of multikilo-
ampere ion beams' are applicable to the creation
of field-reversed ion rings/layers by single pulse
injection in the manner already demonstrated for
E layers.? It has been pointed out® that the field-
reversal factor { =0B/B,=Nr,R/R? can be in-
creased by adiabatic magnetic compression, i.e.,
¢ < B,'?; here B, is the external field, 6B is the
diamagnetic change in the field on axis, N is the
total number of ring ions, 7; =e?/mc? is the ion
classical radius, R is the mean ring radius, and
R =mV,/eB, is the ion Larmor radius in the ex-
ternal field B,. Thus injection of a pulse of in-
tense ion beam followed by magnetic compression
may be a reasonable technique for the production
of a field-reversed ion ring. The low-frequency
stability of the combined ion-ring/background-
plasma system has not yet been satisfactorily
resolved although there have been studies of
(i) specific modes,* with and without a background
plasma, and (ii) stability of plasma confined by
ion ring/E layer but with the ring/layer assumed
to be rigid.’ More recently Lovelace® has ad-
dressed himself to the stability of the combined
system. The present calculation is more general .

l

and differs from his in that the Vlasov formalism
is employed for the ion-ring dynamics as opposed
to his approach which limits consideration to rig-
id displacements of the center of mass of the ring
cross section.

We resolve the system stability by a technique
employed initially by Newcomb” and applied sub-
sequently by Davidson and Krall® to unneutralized
E layers. The addition of a background plasma
enormously complicates the problem. We give
below the main results of the analysis, deferring
the details to a future publication. Since our ob-
jective is to obtain an energy principle that fur-
nishes sufficient conditions for stability we begin
by recognizing the following constant of motion of
system, viz.,

C=U~(QL,~ Jd*d%f Inf),

where the total system energy U is composed of
plasma kinetic energy [d% 3 nmu?, pressure en-
ergy fd%g_p/ (v = 1), electromagnetic energy [d*x
X (|EI2 +|B[?)/87 and the ring kinetic energy [d3
xd% 3 mv%, where f(x,7V,t) is the ring distribu-
tion; L, is the z component of the total angular
momentum,

L,=fd3x2-{nm?><'ﬁ+(4ﬂc)' 1?><(—I§. XE) +mfdsv TXVSE,

and Q is an arbitrary constant. The quantity QL,
— [d® d% f Inf may be regarded as a generalized
entropy of the ion ring in which case C is inter-
preted to be the system free energy when the
plasma pressure is neglected. In what follows
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we limit our discussion to a pressureless cold
plasma governed by the continuity equations, the
plasma ion momentum balance,

nmdi/dt = ne (E +1x B),
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the electron force balance,

E+u,xB =0, @)
and flux conservation,

9B/ot =V x4, % B. 3)
In equilibrium %, =% =E =0 and

n,=n+n, (charge neutrality), (4)

IxB =TVn, —n,mrQ%

(ring force balance). (5)

fo is a monotonically decreasing function of n=H
—QPg and for purposes of detailed calculation it
is convenient to choose exp(-n/T); H=3mv?, Py
=mrvg —evAg/c; J=nyerQ; and ny, n,, andn are
beam, plasma electron, and ion densities, re-
spectively. We now cause a perturbation 6f inf
which gives rise to field perturbations 6E and 6B.
From these perturbations we compute the first-
order perpendicular displacements Z 1e=&, and
Eu of the electron and ion fluids, respectlvely,
from Egs. (3), (2), and (1) with VX6A = GB, i.e.,

- mc a» (6)

6A=£XB=§,X P at [

- - QA - - -
5C =%-fd3x {%;(IGEIZ +16B[2) = ==8-6E x 6B +nmfi )2 + Qler (1,

The first-order changes in density are
ne(1)=-V-neze, n(1)=—V-nz,. @)

Second-order changes are given by

1,2 xB +6, (U x6B =0, (8)

- e - mc -, -
u'? XB+u,(1)X5B =_E_<atu(2)+u(1),vu(1)>’ (9)

0 - ->
_a__iﬁne(z)z_v.(neue(z) +ne(1)ue(1))’ (10)

etc. We now compute the variation of C to second
order, 6C=6C'?, since the first-order variation
vanishes to satisfy equilibrium. The system is
enclosed by a conducting container at whose inner
surface the tangential component of the electric
field vanishes. After some vector manipulations
in which the boundary conditions at the container
are employed to eliminate several surface inte-
grals, we obtain

n(Z))Ag _m(n(l) (1)+nu9 z))]

e fen@ry, | an

We assume that £,=(£+B)/B adjusts itself to maintain charge neutrality under perturbed conditions

also, i.e.,
Jazv o =n (0
and when £, is disallowed then [d% &f ==V- n,,z 1.

(1)

-ngy,

12)

This assumption enables us to neglect the contribution
of the electric fields which in any case are positive definite.®

Without loss of generality we may write

%= 5(1’ z) expli(16 - wt)], where w is the perturbation frequency. From the perturbed Vlasov equation

we obtain

of = (fo/ T}~ (E'EX_];)/nb +egt,
where

g=i(I2-w) _Z,dt" (t')-'\’r(t') xB(t).

Substituting for of, n
(5), we finally obtain after some algebra,

6C =0W g +0W, +6W,,

where

2 ug?, etc., from Egs. (13) and (7)-(10),

(13)

respectively, and employing (12) and

(14)

6WMHD =4 ax{|6B|2/4n +E .+ TxB(v-E) - E.- Tx 0B},

W, =1 [a%x E-FxBmr?/T)E -7,
oW, =5?/T)[a*x d%f,| g1,
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and 6B = vxEx B. In arriving at (14) we have neglected diamagnetic terms arising from the background
plasma of O(w/w; ), where w,; is the ion-cyclotron frequency. Stability is assured if 6C >0 for any ar-
bitrary perturbation Z. Notice that 8W gy, is equivalent to the 6W of the magnetohydrodynamic (MHD)
energy principle in which the current J is carried by inertialess particles; oW, is the destabilizing
contribution from the centrifugal force on the ring; and 6W, is a positive definite term that emerges
from the dynamics of the ring ions which corresponds in some sense to the yp(V+£)? term of convention-

al MHD 6W.

To illustrate the application of this extended energy principle (14) we treat the stability of an infinite-
ly long field-reversed ion ring, i.e., ion layer with B=BZ and foxexp(~n/T). In this case one can

readily calculate
W = (8m)"* [d% BARE 2+ (V-E )],

for E=F(r) expli(16 +kz — wt)]. Employing (5) we obtain
oW, = =3 [ d% nym&,2Q*{(my?Q2/T) +2[1+ (v/&, )at, /dr]}.

We evaluate the orbit integral g that occurs in W, in the limit of a thin layer T/mR?Q*= €<« 1, and
strong field reversal so that the radial betatron frequency wg satisfies Q2/w g’~r €« 1. For marginally
unstable (Imw —0+), nonlocalized modes, i.e., ¥d Inf,/dr|, - <« 1, we obtain in the limit € << 1, and for

1#0,

1 202
6Wb=§jd3xnbm£,292; mrs,

Thus

5C =% f d* {%:[k%f +(v£,)?]

iy oot (=55 vo-0 (15T o (145 ) (-5
T 2'rdyln£,+l (1—m +6-8 l—lQ +3(1+ I l—lQ .

+n,,m‘;’,292;l2 < —Z—%>2+4 —(1—%>-1|:8— 3<1+k:'£2> <1—li;2—>-2:, f} (15)

It is easy to establish that 6C >0 for 1= 2. For I=1, w/Q -0, it is also positive because of finite %.
For arbitrary w, i.e., O<w/Q<«1and =1, the coefficient of n,m£,2Q% in (15) is positive for £%R?
>0.15. Thus the sufficient condition for stability against all modes [>1, viz., 6C >0, is satisfied for

k°R?>0.15.

For the mode I =0 we may also take w — 0 thereby reducing the positive definite term 6W, to zero.

We are thus left with

bt o (0 2 280 |

On minimizing 8C we obtain the Euler-Lagrange
equation for the vector potential A=¢,B:

T A pA = [°0? - 20, (p)/7,JpA =0, (17
where p=7/6, 6%*=(c?/4nn,e?)(2T/Q%), and n,
=7, sech?3(p® —p,?) is the equilibrium density dis-
tribution for the ion layer. Equation (17) is iden-
tical to that derived by Marx' and thus we re-
cover the conventional results on the tearing in-
stability of a long layer.

These results indicate that a short layer, sta-
ble to the tearing instability, has improved sta-
bility properties against all other modes. How-
ever, in the above treatment the destabilizing ef-
fect of field curvature does not occur because of

974

the long-layer approximation. In the opposite
limit which accentuates this effect, Lovelace®
has shown that the stability of a “bicycle tire”
equilibrium is achieved against the kink mode
for R/a<(n/g)"?, where R and a are the major
and minor radii and g is a numerical factor of
order unity, i.e., stable configurations are those
which are “fat” and hence do not truly lie within
the “bicycle tire” approximation R/a> 1. Thus
our calculations and those of Lovelace lead us to
the belief that the most likely equilibrium that is
stable to low-frequency perturbations is one in
which L~A~R, characteristic of experimentally
observed relativistic electron rings in a gas back-
ground,? and also obtained numerically by parti-
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cle simulation.*
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A steep dip in the nuclear-spin-lattice relaxation time, Ty, of liquid *He in contact
with CuTA [copper tetrammine sulfate monohydrate, Cu(NH,),SO,+H,0] has been observed
near the ordering temperature, Ty=0.43 K, of CuTA. Data show that the electron-spin
fluctuation in CuTA plays an important role for the relaxation mechanism of liquid *He
through the boundary interaction. An effective way of liquid-gHe cooling through this

type of interaction is suggested.

Since the observation of the anomalous thermal
boundary resistance between liquid *He and ceri-
um magnesium nitrate (CMN) in the ultralow-
temperature region by Abel ef al.! in 1966, many
theoretical? * and experimental®® investigations
have been carried out to explain the origin of the
phenomenon, Leggett and Vuorio? carried out an
explicit calculation of this phenomenon in terms
of the magnetic interaction between electron
spins in CMN and ®He nuclear spins. Guyer® re-
derived the boundary resistance for the same
system using the relationship between the bound-
ary resistance and the longitudinal relaxation
time of interacting spin systems, and he pointed
out that the strength of the coupling between elec-
tron spins and 3He nuclear spins depends on the

degree of synchronism between the motion of the
two spins. Mills and Beal-Monod* re-examined
theoretically the rate of energy transfer produced
by the interaction between *He nuclear spins and
electron spins. They suggest that the study of the
longitudinal relaxation time, 7,, of the *He nuclei
in contact with the magnetic salt, which has the
magnetic phase transition in the low-temperature
region, would be fruitful for the investigation of
this boundary resistance problem. The present
experimental work has been motivated by this
suggestion.

I have chosen several magnetic salts as elec-
tron-spin systems to interact with the *He nu-
clear spin, and made *He NMR and 7, measure-
ments by the cw method. The results observed
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