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FIG. 2. The maximum field amplitude #,, character-
izing the solutions in nondepleted regions versus the
ion density a =w,?/w?. The depleted regions lie above
the curves. '

waves in inhomogeneous plasmas. When «({) is
a slowly varying function of ¢, the following inte-
gral is an adiabatic invariant®:

I,=¢$P,dr
=4 [%[28 -M?/v*~1?+ 20(1 479V dg, (13)
where the integral is taken over the path for given

E and a. By setting the adiabatic invariant I,
equal to the adiabatic integral for the incoming

wave, I, =$P,  dry= $(2E,-M?/rs -rd2dr,,
one is able to obtain the dependence of the ion
density @ on the incident vacuum amplitude.
When M0, this situation may occur in plasmas
of some sinusoidal ion-density variations. How-
ever, the calculation in this case is quite compli-
cated and will be presented elsewhere, When M
=0, the estimation of the maximum amplitude »,,
presented above reduces to the standing-wave
result of Marburger and Tooper,* which corre-
sponds to the case of monotonically increasing
ion-density variation. .

In conclusion, I have presented a class of exact
general solutions for strong transverse waves in
a cold overdense plasma, which incorporates
both the exact traveling-wave solutions and the
exact standing-wave solutions, The analytic so-
lutions for the circularly polarized waves are
thus suitable for the treatment of inhomogeneous
plasmas with any reflection,
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Envelope Solitons in the Presence of Nonisothermal Electrons*
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A set of equations describing the coupling of high-frequency electrostatic waves with
ion fluctuations is obtained taking into account a nonisothermal state for the electrons.
Stationary envelope solitons are found with narrow widths, slow velocities, and strong
field intensities. For their existence the field intensity has to exceed a threshold which
is determined by the number of reflected electrons,

The problem of generation of localized electric
fields and density cavities has been of much in-
terest!”® in connection with the heating of plas-
mas by a high-power laser or an electron beam.
The mechanism by which envelope solitons are
produced is the ponderomotive force exerted by
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the high-frequency waves on the slow ion motion.
As a result, there appears a density cavity in
which high-frequency waves become trapped.
Two types of stationary rarefaction solitons were
discussed in this context. The first soliton® has
a density depression proportional to €e>ccm,/m;
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and moves with a group velocity v, less than the
sound speed ¢ =(T,/m;)"/2. The second soliton®
has a larger density depression (6n/n,x¢€) and
moves with a velocity slightly less than the sound
speed. In the latter case where v,=c,[1-0(¢)]
additional nonlinear terms in the ion equations
become important. For both cases the analysis
was based on the assumption that the electrons
obey an isothermal equation of state. This means
that the electrons reflected by the negative effec-
tive potential follow an unperturbed Maxwell dis-
tribution. On the other hand, trapping vortices
when observed in computer simulations are usual-
ly represented by flat or concave distributions
for the trapped (reflected) electrons. Deviations
from the isothermal state have recently been re-
ported by Valeo and Kruer* who followed the for-
mation of solitons in a driven plasma. In this
Letter we investigate the consequences arising
from such type of electron behavior. We will
show that a different nonlinearity in the ion equa-
tions arises, leading to a new envelope soliton
solution.

The basic equations are derived in the usual
manner.® Averaging the electron equation of mo-
tion over the high-frequency oscillations, we ob-
tain

dlv,P_ e dog 1 _dpg )
dc  m,dx mn, dx’

where the subscript s denotes the slowly varying
part of the corresponding quantities, and 7, is
introduced by v, =7, exp(—iw,, t)+c.c., the high-

ny(@)=Bn {1 +¢)+|pl Y2x

frequency-induced electron velocity. We intro-
duce an effective potential ¢ =¢ ;- ¢, which is
normalized by the electron thermal energy in the
unperturbed state (¢ ;=e®/T,). Here ¢,=m,|v,>/
T, is the ponderomotive potential. Equation (1)
can be satisfied by assuming an electron equation
of state, namely p =p (@), where dp ,/do =p n @)/
Ny, and po=n,T,. Thus if n(p) is known p (¢) fol-
lows by integration. To getn(¢), we refer to an
appropriate Bernstein-Greene-Kruskal (BGK)
solution because the slowly varying perturbation
can be considered to be stationary with respect
to the electrons. A BGK solution is considered
to be adequate if it represents the nonlinear ver-
sion of the natural eigenmodes of the plasma,
e.g., in our case the ion-acoustic oscillations
(rather than van Kampen modes). As has been
shown earlier,” this means that the electron dis-
tribution function has to satisfy some regularity
requirements.? These are fulfilled if one assumes
for both trapped and untrapped electrons Maxwell-
ian distributions which are joined continuously at
the boundary of the trapped electrons. To de-
scribe also flat-topped distributions or distribu-
tions with a dip at the center, we allow for a dif-
ferent temperature T ,, for the trapped-electron
distribution (3=T,/T,,). The normalization is
chosen such that n, becomes 7, in the zero-field
region (x =+«). Here we are interested in a sit-
uation where ¢ (x) represents a negative potential
dip. Thus some electrons coming from infinity
moving slowly in the comoving frame will be re-
flected from this region. In our terminology
these are the trapped electrons. We obtain’ by
integrating the distribution function

exp[BW +¢)] erf([B@ +¢)]¥?)}, B0, (2)
2r V2w ([- B +9)Y®}, p<o0,

where B is the quantity inside the curly braces at ¢ =0, and - is the depth of the potential. The func-
tion I(x) is defined by I(x)=exp(x)[1 - erf(x*/2)] and W(x) is the Dawson integral, namely W(x)=exp(-x2)
X [y dt exp(t?). If we set B=1, we have n,=n,exp¢, the usual isothermal result. We are interested in
more flat distributions for which g is nearly zero. For small amplitudes ¥ <1, Taylor expansion of

(2) gives
n(@)=n{l+@+£b[p¥2 - @ +9)¥2]} +0@¥2),

(3)

where b =(1-g)r~Y2. From (3) it follows that for a given ¢ (v) the density depression is less pronounced
than in the isothermal case (or in other words, there are fewer particles being expelled from the high-
frequency field intensity region). We relate ¢ with the ion-density fluctuation 8z by means of the slow-
ly varying part of Poisson’s equation

3%, n < 6n>
297Ps Mg _ on
Ne 9% n, 1+n0 ’ (4)

where A, is the electron Debye length. Inserting (3) into (4) and retaining terms up to second order we
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find

on 4p < on )3’2 ( on
2 —— — —-— -
<1 A, ) -~ 9= 3 [ ——Mno _M"o +

e >3/2} _ | (5)

L

In the above, the dispersive term is thereby assumed to be small and 6n, represents the maximum
depth of the density trough. Finally, substituting (5) into the linearized equations for the ions, we ob-

tain

[_8_2__62 82 (1 )\2—— }5_7;_ c 823 IEP

o2 ~ "5 ax? ¢ ox%/ n, S 9x%|4mn,T,

In (6) we have substituted |0 |=|eE|/m w,,,
where E is the slowly varying complex amplitude
of the high-frequency wave. For the electrostatic
waves, the latter is governed by®

2

(; L )E —-—222<Z>E @
where w,, is the electron plasma frequency. We
observe that the strength of the ponderomotive
force is weakened by the appearance of the new
nonlinear term. Thus, for waves propagating
near the sound speed when the nonlinear term
becomes important, a larger field intensity is
required to produce the same density cavity. To
study these phenomena in detail, let us introduce
the following scaling:

5n/n0=—ey(g T), (82)
(47mET Ch “W(i ) exp[i6(7')], (8b)

where for smallness parameter €, whichis a
measure of the ion-density depression (0<v <1),
we set e =n(m,/m;)"’? and n=1. The independent
variables in (8) are £ =€V, Y(x - c,t), T=€7’
=€w,;t, where w,; is the ion-plasma frequency.
Then, to lowest order in €, we get from (6) and

(M

v _18W? 2b 8(1—p)¥2

or 2 08¢ 3 a¢ ’ ()
86 393w vW

SN S sE T (10)

We note that in (9), which in the isothermal case
is a Korteweg-de Vries type equation, the ion dis-
persion term disappeared because of our new
scaling. Only the group dispersion of the high-
frequency waves will play a role.

We now look for a stationary soliton solution.
We introduce a new dependent variable v=1-v
and a nonlinear frequency shift A =2n"%0/07,
and assume v =v (¢ - @7). Then from (9) and (10)
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3/2 3/2
L)) ®
3 n, 7, Ny
we obtain
9v  1owW? 2b opd/2
*SET2BE Y3 pE (11)
W /o t2=(A - 1+v)W/3. (12)

Integration of (11) with W=W, at v =0 (corre-
sponding to the maximum electric field intensity
of the envelope soliton) and W=0atv=1 (x =+x)
yields

W2=W 21 - vY2)(1+vY2+0/p), (13)

a=-W21-p~1)/2, p=3Wz2/4b. (14)

Equation (14) shows that in the laboratory frame
the envelope soliton will move with a subsonic ve-
locity

v,=c [1-0.5¢Y2W (1 - p~1)]

which is less than the soliton velocity for iso-
thermal electrons.
From (11) we have

WW, =0, (a-bo¥2), (15)
where W,=0W /8¢ and v, =0v/6£. Integrating
(12) and using (15) we obtain

sWE=1W3A - 1)+ tv*(a - 4bvY2/5)+C. (16)
Since W, =0 at v =0 we find C=W?2(1-A)/6, and
W¢=0atv=1 (W=0) determines the frequency
shift A in terms of p, i.e., A=3[1-(5p)"Y].
Equations (13) and (16) combine to yield

WE=v(l-0v"2)Q(v), 17)
where

Q)=W2[(p+0.2)(1 —p~*+2Y2)+1.20]/86.

From (13), (15), and (17), after some algebra,
one obtains

vE/2=W2W 2/2(0 - b V2= — V(). (18)
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The classical potential V(v) is given by

V()==v(1-vY22G(v,p), (19)
where
Gw,p)= [v+p(1+0Y2)]{(p+0.2)[vV2+ (o - 1)/p]+1.20} _ (20)

3(1.5072+p = 1)

From (19) it follows immediately that a rarefaction soliton for v (or 6n/n,) exists provided G(v,p) is
positive definite. Since G(0,p)=(p+0.2)/3(p — 1), we get the existence condition p>1. Hence an enve-
lope soliton exists if the trapping parameter b is smaller than 3W,2/4. We conclude that the stronger
the high-frequency field intensity, the larger the deviation from isothermality can be.

The general solution of (18) for arbitrary p is rather complicated. Two particular solutions are
easily obtained. By choosing p=1.5, the function G(v,p) becomes approximately constant; i.e., G(v,p
=1.5)=8k2~0.83. Thus (18) can be integrated to yield

v(£)=4sinh?(ky| £|) exp(= 2k | &]).

(21)

Transforming back to the original variables one obtains

on/n,= —€[1 - 4sinh?(k,| £|) exp(- 2| £])].

(22)

The high-frequency electric field of the envelope soliton is given by

W(E)=W,exp(~ kol £]){2 - exp(— 2%,/ £])[1 - (4/p) sink?(k,| £ )]}/

(23)

Next consider the isothermal limit [b =0 or p—~ in (19)]. Accordingly, we have G(v,=)=(1+vY/2)?/3,
and V(v)=-v(1-v)?/3. The corresponding soliton is given by

on/n,=~¢€ sech’y; E/(4m,T,)"2=€**W sechy exp[icw,,t/4],

where
y=(/6)"2[x/\, - (1 -

Thus our solution with three independent param-
eters (e,W,,p) reduces in the isothermal limit
to that obtained by Karpman.® The one-paramet-
ric soliton solution of Nishikawa et al.® is com-
pletely different. The electric field has a node
at density minimum instead of a maximum. It is
obtained by a different scaling [i.e.,|E/4m T,
=0(e?),7=€%%w,;t], for which the dispersion term
as well as the bilinear term (dn/n,)*> must be re-
tained in (6). We note that our results are valid
in the parameter range (m,/m;)"?«<e2«<1. The
first inequality originates from the neglect of the
imaginary part of (7) (i.e., €2/n «1), whereas
the second one is due to the neglect of the bilin-
ear terms. Let us finally compare our results
with the standing spikes observed in the experi-
ments of Wong and Quon.® The experimental val-
ues (i.e., |Ef?/4m,T,=0.2, &n/n,=0.1) can be fit-
ted by choosing 11=25 (i.e., € =0.1 for an argon
plasma), and W,=2.5. For these values the
speed is found to be v, =c,/p which vanishes in
the isothermal limit. Also the soliton width of
8\, fits well with the experimental value of 10,.
However, we mention that the assumption e¥2« 1

€2 W 2/2)w,,t].

(24)

is not rigorously satisfied, and one should extend
the isothermal soliton into the finite-amplitude
regime. It is found'® that the observations of
Wong and Quon® as well as the more recent exper-
iments of Ikezi, Chang, and Stern'! can be ex-
plained.
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The low-frequency stability of a field-reversed ion ring/layer of large Larmor radius
in a background plasma is treated by a generalized form of the ‘“energy principle.”

Recent advances in the production of multikilo-
ampere ion beams' are applicable to the creation
of field-reversed ion rings/layers by single pulse
injection in the manner already demonstrated for
E layers.? It has been pointed out® that the field-
reversal factor { =0B/B,=Nr,R/R? can be in-
creased by adiabatic magnetic compression, i.e.,
¢ < B,'?; here B, is the external field, 6B is the
diamagnetic change in the field on axis, N is the
total number of ring ions, 7; =e?/mc? is the ion
classical radius, R is the mean ring radius, and
R =mV,/eB, is the ion Larmor radius in the ex-
ternal field B,. Thus injection of a pulse of in-
tense ion beam followed by magnetic compression
may be a reasonable technique for the production
of a field-reversed ion ring. The low-frequency
stability of the combined ion-ring/background-
plasma system has not yet been satisfactorily
resolved although there have been studies of
(i) specific modes,* with and without a background
plasma, and (ii) stability of plasma confined by
ion ring/E layer but with the ring/layer assumed
to be rigid.’ More recently Lovelace® has ad-
dressed himself to the stability of the combined
system. The present calculation is more general .

l

and differs from his in that the Vlasov formalism
is employed for the ion-ring dynamics as opposed
to his approach which limits consideration to rig-
id displacements of the center of mass of the ring
cross section.

We resolve the system stability by a technique
employed initially by Newcomb” and applied sub-
sequently by Davidson and Krall® to unneutralized
E layers. The addition of a background plasma
enormously complicates the problem. We give
below the main results of the analysis, deferring
the details to a future publication. Since our ob-
jective is to obtain an energy principle that fur-
nishes sufficient conditions for stability we begin
by recognizing the following constant of motion of
system, viz.,

C=U~(QL,~ Jd*d%f Inf),

where the total system energy U is composed of
plasma kinetic energy [d% 3 nmu?, pressure en-
ergy fd%g_p/ (v = 1), electromagnetic energy [d*x
X (|EI2 +|B[?)/87 and the ring kinetic energy [d3
xd% 3 mv%, where f(x,7V,t) is the ring distribu-
tion; L, is the z component of the total angular
momentum,

L,=fd3x2-{nm?><'ﬁ+(4ﬂc)' 1?><(—I§. XE) +mfdsv TXVSE,

and Q is an arbitrary constant. The quantity QL,
— [d® d% f Inf may be regarded as a generalized
entropy of the ion ring in which case C is inter-
preted to be the system free energy when the
plasma pressure is neglected. In what follows
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we limit our discussion to a pressureless cold
plasma governed by the continuity equations, the
plasma ion momentum balance,

nmdi/dt = ne (E +1x B),

1)



