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I present a new class of exact solutions for strong transverse electromagnetic waves
in a cold overdense plasma, which incorporates both the exact traveling-wave and stand-
ing-wave solutions. The waves are circularly polarized, and the dielectric constant of
the plasma is a function of z.

Analytical studies of strong electromagnetic
waves propagating in a cold overdense plasma
are generally based on Maxwell's equations and
the relativistic equation of motion for electrons. '
In the absence of the reflected wave the exact
traveling-wave solutions of Akhiezer and Polovin
are found from these basic equations. ' ' Recent-
ly, Marburger and Tooper4 have obtained another
exact standing-wave solution for both homogene-
ous and inhomogeneous cold plasmas, which are
suitable for the investigation of the extreme case
of total reflection.

In this Letter I present a class of exact general
solutions for strong transverse electromagnetic
waves propagating in both homogeneous and in-
homogeneous cold plasmas, The solutions can be
written in a closed form for the homogeneous
case. The waves corresponding to these solu-
tions are circularly polarized, and the dielectric
constant of the plasma is generally a function of
z. If the reflection is negligible, the solutions
reduce to the usual circularly polarized trav-
eling-wave solutions. " The exact standing-wave
solutions of Marburger and Tooper4 are also re-
coverable from the solutions in the case of total
reflection.

The basic equations for strong electromagnetic
waves propagating in a cold overdense plasma
are Maxwell's equations for the electromagnetic
field and the relativistic electron equation for
fixed 1ons:
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where p =rnv(l —v'/c') ' is the relativistic elec-
tron momentum, n, (z) is the ion density, and the
independent variables are z and t. In the case of
a standing wave, it has been shown from Eqs. (1)
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where g = &uz/c. The longitudinal component of E,
however, can be obtained from a time-indepen-
dent scalar potential. Inserting the relevant ex-
pressions into Eqs. (1) we find
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where X denotes dX/d&, etc. , and n, and a are
defined by
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From Eq. (5) it is easy to show that M = r'y is a
constant of motion with respect to the variation
in r, and y varies monotonically with p. The di-
electric constant e of the plasma can also be re-
lated to y by the relation e = y2.

Eliminating u, from Eqs. (3) and (4), one ob-
tains an equation governing the amplitude r.
Here we notice that Eqs. (4) and (5) are derivable
from the Lagrangian

I. = sr'/(1+r') + sr'y' sr'+ u(1+-r'), (7)

where, as before, the dot denotes the differenti-
ation with respect to the "time" variable f, and
n may be a function of g in the case of inhomoge-

that p, = 0 and the wave is circularly polarized. 4

The pure transverse traveling wave existing in
the homogeneous plasma is also circularly polar-
ized.

Let us look for general transverse-wave solu-
tions of Eqs. (1) which incorporate both the pure
transverse traveling wave and the standing wave.
Here we assume that the transverse components
of E and B can be derived from a vector potential
A of the form

S66



VOLUME )6, NUMBER 16 PHYSICAL REVIEW LETTERS 19 APRiL 1976

neous plasmas. The associated "momentum"
conjugate to r is then P„=r'/(I+r'), and the asso-
ciated "energy" E is given by

E = 'r'—z/(1+r') + —'M /r'+ zr -o.(1+r ) ~'. (8)

When the ion density is homogeneous, the "en-
ergy" E is a constant of motion in f I. n the case
of traveling waves, we get from Eq. (2), y(f) =kz
=(ck/~)&. Since M=r'jo is a constant of motion,
this particular form of rp(f) implies that the am-
plitude r2 is constant. On the other hand, if we
let y(f) =0 as required by the case of standing
waves, we find that M = 0 and the Lagrangian
given in Eq. (7) reduces to that obtained by Mar-
burger and Tooper. ' Therefore I conclude that
the present form of the Lagrangian governing the
equations for the amplitude r(f) and the phase
y(f) is more general than those obtained so far
for strong transverse electromagnetic waves
propagating in a cold overdense plasma.

I'or the homogeneous ion density, the motion
for the amplitude r may be examined by consider-
ing a plot of the effective potential V, fi(r) = ~zM'/r'

+ rz-a(1+r') ~' against the amplitude r. The
condition r=0 indicates the turning points of the
"path, "and the range of r falls between the limits
g III' li and r ill,„. The path is not closed in the pres-
ent case. ' As %10, the amplitude r can never
be zero except for the case of standing waves. By
tion
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FIG. 1. The transverse electric field r and the elec-
tron density ~&'/+' versus P =~z/c over a quarter
period f& with the values of the parameters E = 1.5 and
M=0.3. The ion density ~&0 /~2 is chosen to be $.

letting u'=1+r' we obtain, from Eq. (8), the rela-

/=du[ u4+2o-. u'+2(E+1)u'-2uu-2E-M'-I] '/'+const. (9)

Thus the amplitude r can be expressed explicitly
in terms of Jacobi's elliptic functions. The for-
mulas for r as a function of g are more compli-
cated than those obtained for the standing waves
and will be given elsewhere. Once r = r(g) is
known, the phase y(r), the electron density o.,(g),
and the spatial quarter period f~ can in turn be
calculated. As an example of the solutions, I
present, in Fig. I, the dependences of the ampli-
tude r and the electron density 0., on the spatial
variable &~ for the value of u =+.

From Eqs. (3) and (4) it is easy to show that
when the following condition is satisfied,

M'(1+r ') +r r2(1+zr') & —n(1+r')' ', (10)

the electron density can vanish. This may occur
if the values of r are near r,„and M is small.
Where there are no electrons, the Lagrangian
reduces to the form in a vacuum,
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In this case, the associated momentum conjugate
to rp is Pp„= rp and the associated energy is given
by E, = z rc'+ zM'/ro'+ —,'ro'. The boundary condi-
tion at the depletion boundary requires that the
logarithmic derivatives of the solutions in two
regions match at the boundary. The value x„of
the amplitude at the boundary between the de-
pleted and the nondepleted regions can then be
obtained from the equation

(E 2 M2)&/2sin(2G) (1+r 2)&/2
0 =n 12)GE +(E '-M')' 'cos(2G)

where G'=2(r~/o)'[E —V,ff(r„)]. In Fig. 2, I
show the dependences of rd versus n for the par-
ticular case with maximum amplitude r
The depletion region lies above the curve.

The solutions for strong transverse waves
found in Eq. (2) can. be employed in the investiga-
tion of the properties of the electromagnetic
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FIG. 2. The maximum field amplitude y character-
izing the solutions in nondepleted regions versus the
ion density o. =co&0~/u . The depleted regions lie above
the curves.

wave, I „= PP, „dro = f(2Eo -Ms/res r-o2)'I2dro,

one is able to obtain the dependence of the ion
density e on the incident vacuum amplitude.
When M&0, this situation may occur in plasmas
of some sinusoidal ion-density variations. How-

ever, the calculation in this case is quite compli-
cated and will be presented elsewhere. When M
=0, the estimation of the maximum amplitude r
presented above reduces to the standing-wave
result of Marburger and Tooper, 4 which corre-
sponds to the case of monotonically increasing
ion-density variation.

In conclusion, I have presented a class of exact
general solutions for strong transverse waves in
a cold overdense plasma, which incorporates
both the exact traveling-wave solutions and the
exact standing-wave solutions. The analytic so-
lutions for the circularly polarized waves are
thus suitable for the treatment of inhomogeneous
plasmas with any reflection.

waves in inhomogeneous plasmas. When n(f) is
a slowly varying function of f, the following inte-
gral is an adiabatic invariant'.

I„=)P„dr
=4 j'n[~ Iif2/rs r2~2o(i+r2)»g dg (]3)

where the integral is taken over the path for given
E and n. By setting the adiabatic invariant I„
equal to the adiabatic integral for the incoming
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A set of equations describing the coupling of high-frequency electrostatic waves with
ion fluctuations is obtained taking into account a nonisothermal state for the electrons.
Stationary envelope solitons are found with narrow widths, slow velocities, and strong
field intensities. For their existence the field intensity has to exceed a threshold which
is determined by the number of reflected electrons.

The problem of generation of localized electric
fields and density cavities has been of much in-
terest' ' in connection with the heating of plas-
mas by a high-power laser or an electron beam.
The mechanism by which envelope solitons are
produced is the ponderomotive force exerted by

the high-frequency waves on the slow ion motion.
As a result, there appears a density cavity in
which high-frequency waves become trapped.
Two types of stationary rarefaction solitons were
discussed in this context. The first soliton' has
a density depression proportional to e oem, /m, .
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