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The shape of the large, random clusters, occurring near percolation threshold cp is
shown to be such that the mean cluster boundary-to-bulk ratio & b&/&n & gives c&. A Mon-

te Carlo calculation yields that the cluster size distribution is proportional to a gaussian
in b/n which is independent of concentration and narrows to a d function as n ~; the
asymptotic behavior gives co and the critical exponents.

In recent years, we have seen an evolution in
the understanding of a remarkable new regularity
of nature in the universality of critical indices. '
The renormalization group has been developed to
calculate these universal exponents. ' But, surely
the underlying source of this universal behavior
is a limit theorem on the probability distribution
of the fluctuations that occur near critical points.
In the results presented here, I report a new
form for the probability P(n, b) of finding, for
large n, a fluctuation extending over n lattice
sites and bounded by b sites. This probability
distribution is indicative of a new kind of limiting
behavior. For simplicity, we consider here the
site-percolation problem on a simple square lat-
tice, where each site is randomly occupied (or
not) with a probability c (or 1-c) which is inde-
pendent of the occupation of other sites. The
common characteristic of the so-called "percola-
tion problems" in nature is the direct relation be-
tween the various physical properties and the
moments of the cluster size distribution, a rela-
tion which allows one to calculate the singular be-
havior of those physical properties by studying
the cluster size distribution. '

An exact, general expression for the probabili-
ty P(n, b) of a nonnull cluster of n occupied sites
isolated from the rest of the lattice by a boundary

c,=(1+o.,) '. (4)

Thus, the critical concentration may simply be

of b vacant sites was given by Fisher and Essam4
in 1961, namely,

P(n, b) =M(n, b)c" (I-c),
where M(n, b) is the number of distinct clusters
of size n and boundary b that can be drawn from
a single origin. For c &co, where no infinite
cluster exists, this probability is normalized,
i.e., -Q„,P(n, b) =1. Thus multiplying Eq. (1) by
c, summing over all n and 6, and then differenti-
ating with respect to c, we obtain the identity

1= &n)-f c/(1-c)] (b) for c&cc.

As the concentration c approaches the critical
concentration c„ the mean cluster size (n)
=P„,nP(n, b)-A(c, —c) & diverges with critical
exponent y. When (n) diverges, we see from Eg.
(2) that the mean boundary size (b) must also di-
verge with the same exponent y. Thus, we find
that the shape of the large clusters is governed
by

&b) - u, &n)

as c approaches c„where a, is related to the
critical concentration by
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obtained from the limiting behavior of the mean
boundary-to-bulk ratio (b) /(n). These results
are true on any lattice.

In order to study the behavior of the cluster
size distribution for large n, I performed a
Monte Carlo calculation of R(n, b) by assigning
random occupation to sites on a square lattice
and keeping the statistics on the number of sites
n and the number of boundary sites b in each ran-
domly generated cluster. Instead of studying all
the clusters in a finite segment of the lattice, I
generated and studied only one cluster at a time.
By this means I obtained statistics on about
100000 clusters at c =0.50 and about 24000 clus-
ters at c =0.55. More details of this calculation
will be presented in a forthcoming publication. '
The results of the Monte Carlo calculation satis-
fy Eqs. (1) and (2) and, for large n, are fitted by
the following empirical formula quite well:

P(n, a) =Kn "(c/c„)" '

x[(1-c')/(1-c„)]""m(n,a), (5)
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where a=b/n, c~=(1+a) ', K and )f are con-
stants, and m(n, a} is the normalized Gaussian

m(n a) =(2v) '/'o(n) '

xexp(-[a —p,(n) ] '/2o'(n)], (6)

ll

FIG. 1. The integrated, weighted probability Q&Pfn, b)
&& ((c~/c) ((1-c„)/{1—c)}"]"versus n.

with the mean p.(n) and standard deviation o(n) of
m(n, a) given by

p(n) = a, +A/na (7a)

o(n) =8/n", (7b)

where ao, A, g, B, and y are constants. This
result was obtained as follows. First, the factor
Kn "(c/c„}" '[(I-c)/(I -c~)] " was guessed from
the exact solution for the Bethe lattice (or Cayley
tree} which can easily be obtained from Eq. (1}
and the results in Ref. 1. Then I used Eq. (5) as
a definition of the then unknown, but normalized
m(n, a). As a first check of this guess, I numer-
ically evaluated I(n) =g, /„Kn xm(n, b/n) =Kn
to see whether it was indeed independent of the
concentration c. This was accomplished by
weighting the contribution of each cluster to I(n)
by the factor {(c/c„)" '[(1-c)/(1-c )j""] '. The
histogram (of bin width b, n = 10) of the numerical
results obtained for I(n) is shown in Fig. 1 for
independent runs at the two concentrations c =

0.50 and c = 0.55. The best least-squares fit of
I(n) by the form Kn ", for n in the range 75&n&
905, gives y=0.97+0.007 and &=0.257+0.01,

where the errors are statistical. That this result
is independent of concentration (as long as there
are reasonable statistics in each histogram bin)
is a check on the validity of Eq. (1).

I then explicitly calculated m with the results
shown in Fig. 2, where m(n, b/n) is plotted versus
b/n for clusters of size n = 105 and 205, respec-
tively. The histograms of the data shown in Fig.
2 are of bin widths hn = 10, and b(b/n) = 0.01; the
statistical errors in the data are indicated at a
few selected points. The smooth curves are the
results of a least-squares fit of the data by Gaus-
sian forms with variable standard deviations and
means. That the data is indeed Gaussian can be
seen in Fig. 3 where the integral f m(n, a) daro /n

of the data in Fig. 2 is replotted versus b/n for
n = 105, on an arithmetic probability (or "Gaus-
sian") scale. The straightness of the data plot
indicates the degree of Gaussian character. Thus,
Eq. (6) is verified. The n dependence of the mean
p(n) and standard deviation o(n) are then easily
deduced by fitting p(n) and o(n) by the forms
given in Eq. (7), either by a logarithmic plot or
by a least-squares fit by Eq. (7). The results are
as follows: For the mean position +0=0,704+
0.04, A = 2.53 + 0.5, and g = 0.512 + 0.09, a.nd for
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FIG. 2. The form of m(n, b/n) versus b/n. The data

points are the results of the Monte Carlo calculations
at c =0,.50 for histogram bins centered at n = 105 and
205. The vertical line at b/n =0.704 represents the
limiting & function, extrapolated from the data as
n ~, and the smooth curves are Gaussians fitted to
the data.

(8)

Since the I =0 moment gives P and the I = 1 mo-
ment gives y, we set

(x-v'--;)/v = p, (9a.)

v '=p+y. (9b)

Then, since I = =1 gives the singular part of the
free energy per site which has critical exponent

the standard deviation B=0.250+ 0.096 and y =

0.40+0.04. Details of this fit to the data will be
presented in a forthcoming publication. '

In order to understand the predictions of this
empirical formula for the values of the critical
exponents, ' we find the most singular part of the
Lth moment (n ) of the cluster size distribution,
namely fo dnn~f dna(n, n). Using Egs. (5) -(7),
the u integral can be evaluated by the method of
steepest descents to obtain the asymptotic form
for large n. In this integral we keep only the
largest powers of n (assuming y& —,

' so that terms
in n'~ are neglected when added to terms linear
in n), and finally, we keep only the lowest-order
terms in x =co-c. The resulting n integral can
be done analytically, with the following resulting
singular behavior,

(n ) ~x & '"" ' » ~for x«1.
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FIG. 2. An arithmetic probability plot of f „m(n, &)

~d& versus &, for the n =105 data of Fig. 2. If this
function were erf(b/n), the plot would be a straight
line.

(2-n), we find that the empirical result here
yields the scaling law n+2P+y= 2, which is re-
assuring. The numerical values for y, P, and n
obtained using Eqs. (9) are y= 2.34+ 0.3, P=0.19
+0, 16, and e=-0.72+0.4, which are consistent
with the previously obtained values, although the
statistical errors are rather large here. The
previously obtained values of the critical expon-
ents in two dimensions include, from Harris et
al. ,

' the series-expansion result a = -0.7+ 0.2,
p=0. 148a0.004, and y=1.85+0.2, and the Monte
Carlo result p=0. 14+0.02 and y=1.9+0.2; the
result, obtained from an analysis by Harris et
al. ' of a previous Monte Carlo calculation of Dean
and Bird, ' p=0. 16+0.02 and y=2. 2+0.2; and the
result of two separate series-expansion calcula-
tions' p=0. 14+0.03 and y= 2. 1+0.2. The expon-
ent y '= P+y = b. interestingly gives some new
physical meaning to the gap exponent 4.

The mean-field exponents p =y = 1 are recov-
ered as y- —, and cp ——,

' in Eqs. (9); just at p = a,
it should be noted, there enter other corrections
which were neglected above since terms in n ~

were neglected for large n, when compared to
terms linear in n. That the standard deviation
shrinks as n ' ' is the usual central limit behav-
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ior. In this case, the nonclassical exponents
arise from this new limiting behavior. Details of
these and other properties found for the large
clusters near percolation threshold are planned
to be published shortly. '

Finally, Kasteleyn and Fortuin' have derived
the analogy between the percolation problem and
a particular limit of a system exhibiting a ther-
modynamic phase transition (the one-component
Potts model). Thus, it is possible that a limiting
behavior, similar to that reported here, but in
the surface-to-volume ratios of fluctuations near
thermodynamic critical points may generally be
a primary factor in thermodynamic critical be-
havior.
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The Froissart-Martin bound on the total cross section is improved by taking into account
the multiplicity distribution of secondary particles, in addition to the unitarity, analytici-
ty, and polynomial boundedness of the scattering amplitude in the Martin ellipse.

Since Froissart' found an upper bound on the
total cross section (o,) at high energies, much
effort to improve it has been made. " At pres-
ent the Froissart-Martin bound is represented
as

o,& (4m/t, ) ln'(s/s, ),

of a multiparticle generating function constructed
from 0„, where o„ is the cross section for n-par-
ticle production.

In this note I show that the multiplicity distribu-
tion of secondary particles is indeed important
for the bound of 0,. Namely, I improve the Frois-
sart-Martin bound such that

where s is the square of the c.m. energy, t, is
the square of the mass of the lowest energy state
which couples to the t channel, and s, is some
unknown scale factor. A proof has been made
under considerably weaker assumptions than the
original ones: the unitarity condition, analytici-
ty, and polynomial boundedness of the scattering
amplitude in the Martin ellipse. ' Conversely,
Kinoshita' and Martin' have shown that it is not
possible to improve the energy dependence of the
bound under the same assumptions. The possi-
bility of improvement, however, has been dis-
cussed by Khuri' in terms of the location of zeros
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where (n) and D' are the mean value and disper-
sion (D'= (n') —(n)') of the multiplicity distribu-
tion, respectively.

The proof of (2) is as follows: From the defin-
ing formulas of o„(n), and (n'),

0'& —0'& = 0'„
n&3

(n) o, —2o, = g no„,

(n') v, —4o, = Q n'o„,
n&3


