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TABLE I. Comparison between our previous meas-
urement and those of Wallenstein, Paisner, and Schaw-
low for v' = 62, J' = 27 level.

TABLE II. The results of our present experiment.

v' = 62, J' = 27
v'=64, J'=40

—1.82+0.06
—2.7+0.3

3.65 +0.4
7.5 +1.7

Our previous meas-
urement (Ref. 2)

Wallenstein, Paisner,
and Schawlow (Ref. 1)

—1.6 &0.2

—2.6 +0.2

3.5.~0.5

7.5 +0.8

comes not only from the v'=62, J= 27 level but
also from four other levels because the 5017-A
line coincides with the following transitions: 62-0
P(12); 62-0 R(26); 64-0 R(79); 67-0 R(49); (70 + 1)-
0 R(54+1). The g~ and g, values of the levels ex-
cited by these transitions have been measured by
the technique of resonances in a modulated light
beam. The details of the experiment and the com-
plete results will be published elsewhere. How-
ever, we extract from these results the content
of Table II.

The comparison between Table I and Table II
leads to the following conclusions: Our previous
measurement was correct and is confirmed. The
measurement of Wallenstein, Paisner, and Schaw-
low is also correct. But it refers to the v'=64,
J' = 40 level and not to the g' = 62, J' = 27. To sup-
port this conclusion, we present the following ar-
guments: In our experiment, the laser was oscil-
lating in a single mode in order to excite mainly
one level and a spectroscopic study of the fluores-

cence permits an unambiguous assignment of this
level. On the contrary, Wallenstein, Paisner,
and Schawlow never studied the fluorescence spec-
trum but decided on their assignment after a pre-
cise comparison between the wavelength of their
dye laser and that of an Ar' laser oscillating at
5o17 A. This comparison is clearly insufficient,
the 62-0 R(26) and the 64-0 R(39) absorption lines
lying within 3 6Hz. Moreover the fluorescence
intensities that they provide are of the same or-
der. Therefore we think that this controversy
has at least the interest of pointing out the effi-
ciency of the technique of resonances in a modu-
lated light beam.

R. Wallenstein, J. A. Paisner, and A. L. Schawlow,
Phys. Rev. Lett. 32, 1338 (1974).

~M. Broyer, J. Vigud, and J. C. Lehmann, Chem.
Phys. Lett. 22, 318 (1973); J. C. Keller, M. Broyer,
and J. C. Lehmann, C. R. Acad. Sci., Ser. B 277, 369
(197').

A. Corney and G. W. Series, Proc. Phys. Soc., Lon-
don 88, 207 (1964).

J. C. Liehn, M. Berjot, and M. Jaron, Opt. Commun.
10, 341 (1974).

Roton Second Sound~

Humphrey J. Maris
Department of Physics, Bxoum University, Providence, Rhode Island 02912

(Received 5 February 1976)

Second-sound propagation is considered, both when collisions between elementary ex-
citations do and when they do not conserve total number. Simple expressions are de-
rived for the velocity in each case. Assuming number conservation in roton-roton col-
lisions, the velocity of roton second sound is found to be 3%I'/po, where po is the momen-
tum at the roton minimum.

Recent experiments by Dynes, Narayanamurti,
and Andres' ' have convincingly demonstrated
the existence of roton second sound in superfluid
He4. In their experiments a pulse of phonons was
generated by electrically heating a metallic film
in contact with the liquid. The detector was a
bolometer placed a few millimeters away. At

high temperatures (e.g. , 1 K) each pulse generat-
ed gave one pulse at the detector. The propaga-
tion velocity was close to the second-sound ve-
locity given by Landau's formula'

c,' = TS'/p„C,

where S, C, and p„are the entropy, specific
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heat, and normal-fluid density, respectively. At
a liquid pressure of 24 atm and at temperatures
around 0.6 K two pulses were detected by the
bolometer. The pulse that arrived first had a
velocity close to the velocity of ordinary (first)
sound and was produced by phonon excitations
which had traveled without scattering from the
generator to the detector. The slower pulse had
a velocity somewhat greater than that of second
sound at 1 K and is believed to be roton second
sound. This is a collective excitation similar to
ordinary second sound, but involving only excita-
tions from the roton part of the spectrum. It is
possible for there to be a collective excitation
of the rotons uncoupled to the phonons because,
under the conditions of the experiment, the rotons
interact strongly among themselves (collision
time ERR) but weakly with the phonons (collision
time v»» ERR). Roton second sound was first
predicted by Khalatnikov and Chernikova, "' who
carried out detailed calculations of &» and v»
to determine the conditions under which it could
be observed. Their result for the velocity was

c2R T~R /pnRCR & (2)

where the quantities S„, C&, and p„& have the
same meaning as in Eq. (1), but only the roton
contribution to each quantity is considered. In
this Letter I make some general comments on
the characteristics of second-sound propagation,
and consider the validity of the Khalatnikov-
Chernikova result for the velocity of roton sec-
ond sound.

The second sound velocity can be derived by
starting from the Boltzmann equation for the ex-
citations. This is

n~ = (ri~) „11—v~. vn~, (3)

where n~ and v& are the number and group veloci-
ty of excitations of momentum p, and the first
term on the right-hand side is the contribution to
&i~ from collisions between excitations. I consid-
er only solutions of (3) which are sufficiently
slowly varying in space and time that n~ always
corresponds to a distribution which is in local
equilibrium. The most general from of n& is then

n, =(exp[(e~ —p i+ap, )/k(T +b.T)]—1] ', (4)

where 7, 4p. , and &T are the local drift velocity,
change in chemical potential, and change is tem-
perature, respectively. 4 p. will be zero unless
the number of excitations is conserved in colli-
sions between excitations. If one now looks for
wave solutions of Eq. (3) in which V, 6p, , and

&T all vary as exp[i(Kz Q-t)], one can use the
conservation laws of energy, number, and mo-
mentum to derive the following equations:

c[A200(6 T/T ) +Aloof p ] A, 111V/3: 0

C[A100(AT/T) +A. OOOO/ ] A011V/3: 0

A. ill(AT /T) +Apll 6 p CA020V: 0

where c =—0/K is the wave velocity, and

A„sy- f e~ psv2~n~(n~+1)dr~;

(5)

(7)

(8)

n~ is the equilibrium distribution function for the
exeitations.

In the standard theory of second sound' it is as-
sumed that collisions between exeitations do not
conserve number. Then 4p = 0 and only Eqs. (5)
and (7) should be considered. The resultant ve-
locity is thus

v =Al„'/3A200Ap2p. (9)

It is straightforward to show that A», = 3''S,
A200=kT2C, and A020=3kTp„. Thus Eq. (9) is
equivalent to the standard result, Eq. (1). The
subscript p is added to the velocity to emphasize
that in this ease second sound is a wave at con-
stant (and zero) chemical potential.

At 1 K and above it is certainly correct to set
4p, = 0 because there are many collisions between
excitations which change the overall number of
excitations. However, in considering roton sec-
ond sound one must not make this assumption.
Roton second sound can only exist when collisions
between rotons and pbonons can be neglected.
Thus, the important conservation laws are those
pertaining to roton-roton scattering. Now this
scattering is almost entirely of the type

8+8' 8"+8"
and thus conserves number. Hence to calculate
the velocity one should solve Eqs. (5)-(7) with
nonzero 6p. . The result is a velocity c„for
"constant number" waves, given by

2 Aoll A200 AollA111A100+ 111 Aooo (10)
3A 020( 200 100 100

For the case of an arbitrary dispersion law for
the excitations the velocities c„and c„are dif-
ferent. In all cases cR &c&, because from (9)
and (10)

2 c 2 (A oll 200 A lop 111)
A o2oA2oo( 2ooAooo Aloo )

Note that A. 20pAopo is always greater than A»,'.
For free particles with e =P2/2m, evaluation of
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the A coefficients gives

c„=c = -""(kT/m)'".N p 3

For a gas of phonons, one has e =cp, and one
finds

C N = C ~
= C /'A .

However, for a roton gas with dispersion law

e =&+(p -p, )'/2m,

(12)

(13)

first changed by 6V at constant S and N, and a
pressure change &P, results. In general, a
change ~p, in the chemical potential will be pro-
duced. The second contribution &P, now arises
from the change in pressure at constant V and S
when 6p, is reduced to zero as a result of num-
ber-nonconserving collisions between excitations.
It is &P, which gives the difference between B»
and B». Now for a gas of free particles we can
write

one obtains for low temperatures (kT «6, mkT
«p 2)

cN =3kT/p„c„=3'"kT/p, . (15)

CN (BSN/P~) (16)

where Bz~, the bulk modulus of the excitation
gas at constant entropy and number, is defined
by

B,„-=—V(3P/3 V),„.
The pressure of the gas is

j. IP = g JPvpnp d7p .
It is straightforward to verify that the guess (16)
is in agreement with the expression (10) for c„
in terms of the A. ~ay coefficients. This is turn
leads to the conjecture that the velocity of ordi-
nary second sound (i.e., second sound at constant
and zero chemical potential) should be given by
the surprisingly simple formula

c„'=Bs„/p. ,

Bsq ———V(3P/3 V)s p

It is straightforward to show by use of thermo-
dynamics that this is equivalent to the Landau
formula (1) and to the expression (9) in terms of
the A &py coefficients. Consider now the deriva-
tives involved in B» and B». We may imagine
two contributions to the total pressure change &P
resulting from a volume change 6V at constant
entropy and chemical potential. The volume is

Thus the result c„for the velocity of roton sec-
ond sound differs from the Khalatnikov-Cherni-
kova result cz by a factor of v 3.

One can understand why there is a difference
between c& and c& for rotons but not for free par-
ticles or phonons, as follows. When number is
conserved the collective excitation that is tradi-
tionally called second sound can alternatively be
viewed as an ordinary sound wave propagating in
the gas of excitations. Hence one might guess
that

P=
~ Jepllpd1p.

Hence, the pressure is completely determined
by the internal energy which cannot be changed
by collisions, whether or not these collisions
are number conserving. Thus 6P, = 0 and B»
and B» are equal for free particles. Similarly,
for a gas of phonons,

x f'P = 3 g epn&d7p.

and so again B» and B» are the same. For ro-
tons, however, the pressure is not just a func-
tion of the internal energy and so &P, is nonzero
and B&„ is greater than B».

The present theory predicts that the velocity
of roton sound should be (19 K ')T m sec ' at 24
atm, whereas the Khalatnikov-Chernikova theory
gives (11 K ')T m sec '. The experiments per-
formed to date are not sufficiently accurate to
confirm definitely one velocity or the other. '
More accurate measurements would be very
worthwhile since if agreement with theory were
obtained this would provide some confirmation
of current views on roton-roton interactions.
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~See, for example, J. WQks, Liquid and Solid Helium
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There exists one other solution to these equations;

this has c=0.
SH. C. Dynes, private communication. See aIso Fig.

29 and related discussion in Ref. 2.
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Systems of spin-aligned hydrogen isotopes are studied. They are shown to exhibit even
more extreme "quantum" behavior than the helium isotopes. Spin-aligned hydrogen is
predicted to be a gas at all temperatures and its Bose-Einstein condensation and possible
superfluidity are discussed. Spin-aligned deuterium is predicted to show critical behav-
ior strongly influenced by quantum mechanics. The preparation of spin-aligned hydrogen
(in the presence of large magnetic fields) is also discussed.

Recently Dugan and Etters' and Etters, Dugan,
and Palmer' have studied the ground-state prop-
erties of spin-aligned isotopes of hydrogen, which
we denote by Hk, D0, and T4. They used a
Morse-potential approximation to the accurate
pair potential for two hydrogen atoms in the 5 'Z„'
state calculated by Kolos and Wolniewicz. ' DEP
pointed out that systems composed of these spin-
aligned atoms were strongly quantum mechanical
systems analogous to those composed of the heli-
um isotopes and they briefly discussed their pos-
sible superfluidity.

Here we discuss further these spin-aligned sys-
tems which may conceivably be prepared in mag-
netic fields of the order of 10' G. Our main point
is that the study of these systems should yield ex-
citing and fundamental new information about the
properties of quantum systems. Since H0 and D0
are lighter and more weakly interacting than 4He

or 'He, they may be expected to exhibit even
more extreme quantum behavior than helium
does. The present work utilizes recent studies
of quantum systems within the context of the quan-
tum theorem of corresponding states (QTCS).
We analyze the expected superfluid properties
and the quantum-mechanically driven phase tran-
sitions which may occur in these systems. 4' We
also discuss briefly the feasibility of preparing
spin-aligned systems.

We shall begin with a discussion of the K-W po-

tential for the b 'g „' state of H, (Fig. 1). We have
also pictured a Lennard-Jones (L-J) potential
chosen to fit the well depth and position of the
minimum of the I-W potential. Although DEP fit
the K-W potential with a Morse potential, we be-
lieve that the L-J potential also gives a reasona-
ble fit. Moreover, it represents the long-range
r part of the potential better, which is impor-
tant for these weakly bound systems. En addition,
it allows us to make contact with the wide range
of calculations which already exist for L-J sys-
tems. 4'

We now recall briefly the QTCS." It applies to
a class of systems with a pair potential of the
form v(r)= ev "(r/0) where e is the coupling con-
stant, g is the "collision diameter, " and v*(x) is
the same dimensionless function for each system
in this class. For the L-J potential, v*(x)=4(x "
—x '). We introduce the quantum parameter' q—= h'/mao', the reduced temperature T*=hsT/e,
the reduced volume V*= V/Nv', and the reduced
Helmholtz free energy M= E/Ne. . The QTCS
states that for a one-component system,
= F*(T*,V*, rl), where F* depends only on the
form of v*(x) and on whether the particles obey
Bose-Einstein or Fermi -Dirac statistics. " val-
ues of e, v, g, and other useful quantities are
given in Table I for H4, D0, T4, and other light
elements. Heavier spin-aligned atoms such as
Lik and N4 are not expected to show significant
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