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I show that pointlike singularities can exist in superfluid He. Integer quantum num-
bers are associated with these singularities. The quantization rules follow from the sin-
gle valuedness of the order parameter and quantities derived from it. The results are al-
so easily extended to the quantization of point singularities in nematic liquid crystals, The
pointlike singularities in 3He-A are experimentally accessible analogs of the magnetic

monopole.

The quantization of vortices in superfluid *He
and in superconductors is a consequence of the
existence of a single-valued complex order pa-
rameter, ¥ =|y| expi¢. The single-valuedness
assumption implies that the phase, ¢, can only
change by an integral multiple of 27 upon travers-
ing any closed path in coordinate space so that

$v@edl.=27N. (1)

As a result, circulation and fluxoid are quantized
in the respective cases.

I shall show that similar considerations lead to
the quantization of pointlike singularities (which
I call vortons for brevity), occurring in vector
fields derived from the (tensorial) order parame-
ter of superfluid *He. Since the quantization rule
only requires a well-defined vector field, it may
be applied in other contexts, e.g., to the director
field in nematic liquid crystals.

I will derive the quantization rule within the
framework of one of the physically more inter-
esting cases: a complex order parameter which
appears to describe *He-A and has the form

Oy, Tp) =x RIR[A,(F) +3B,(F)], )

where ¥ = (T, +7,)/2, R=%,-T,, A,+A,=5,, and
where the local symmetry axis is given by /=4,
XZ\Z. [is particularly appropriate for applica-
tion of the quantization rule because, besides the
possibility of “real” vortons, it can also be ma-
nipulated (by the choice of boundary of the 3He-A
sample and by the creation of a multiply connect-
ed sample through seeding the sample with parti-
cles of foreign matter) to give nontrivial exam-
ples (i.e., quantum numbers not equal to zero)
of the quantization rule. This results from the
apparent tendency of [ to orient itself perpendic-
ular to boundaries.!

_ Reserving upper indices for the components of
A, 52, and Z: I define

liﬂ = 8l“/3xi N (3)
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and will prove that
1
N:g;fdsx €4 n €ape L 1,° (4)

is an integer if ] is a single-valued vector field
and [+7=1, where ¢,,, is the usual antisymmetric
tensor with €,,,=1, €,,,=—1, etc. The integrand
of Eq. (4) will also be shown to be zero except for
vortons where 6-function singularities occur.

I now prove that N is an integer. First note
that (4) may be rewritten as a surface integral

1 > >
:-é—‘”-fsd&u, (5)

where
Uy =€, eabcl“lj”l,f, (6)

and where, without loss of generality, I take the
surface to be a sphere. I parametrize the sur-
face with two variables, 71, and 7,, so that

1 o(x,, x,)
dS,==€,, — 2"k % 7
iU kR 8(11, 75) K (7

After expressing the derivatives of [ in terms of
derivatives with respect to the new variables,

; =§£f th ’ (8)
I find
N=-Lt fariE, ©)
47
where
b jc
=3 o ) (10)

From Eq. (10) we see that 1 is the normal to the
surface [-I=1 and thus the integral in Eq. (9)

gives the area of the unit I sphere® multiplied by
the difference of the number of times the area of
the unit fsphere is swept out in a positive sense
minus the number of times the area is swept out
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in a negative sense as I cover the sphere parame-
trized by 7, and 7, in coordinate space. The sin-
gle valuedness of [ implies that the difference
must be an integer and thus N is a positive or
negative integer.

The quantization rule can be rewritten in terms
of the more fundamental fields, A ;» by substitu-
tion of [=A,xA, in Eq. (5) with the result

U=2VXvy, (11)
where
V=A,°VA,°%, (12)

with repeated indices summed. Equation (11)
proves that the integrand in Eq. (4) is zero ex-
cept for a set of points of measure zero. Further-
more, it also reveals, by comparison with Eq.

(6) of Mermin and Ho,?

(VXV,), = ribLe (13)

7
oM €44k €ave
(with v, usually identified as the *He-A superflu-
id velocity field), that

v=(M/n)v,, (14)

up to an irrelevant gradiant term. Use of Stokes’s
theorem relates N directly to v,,

N=(M/2hn)$dL-7,, (15)

and betrays a striking similarity in form to the
circulation quantization condition in superfluid
“He. The line integral in Eq. (15) encloses only
the singular points of v, in the surface S and usu-
ally must be obtained as the limit of another con-
tour shrunk to enclose only singular points.

If we apply the above considerations to a unit
vorton at the origin, ! =7, then we find the inte-
grand of Eq. (4) is 876°(r) giving N=1. A possi-
ble v, field associated with the unit vorton has
singularities at 6=0 and 6 =7 (in a spherical co-
ordinate system established for simplicity on a
unit sphere in » space) and the line integral in
Eq. (15) consists of two circles on the sphere,
one around each singularity, which are (after
integration) shrunk to enclose just the two singu-
lar points. The contributions from each singu-
larity are equal and add to give N=1,

The discussion of quantized structures in super-
fluid *He has depended only on the existence of
single-valued vector functions associated with the
order-parameter tensor. This reflects the under-
lying basis of the quantization of vortons in ho-
motopy theory.* The quantum number, N, is
equal to the Brouwer degree of the vorton. Thus
the integral nature of N is a consequence of the

topological structure of three functions defined
on a three-dimensional coordinate space and does
not depend on dynamical considerations. As a
result, the quantization rule, Eq. (4), can be rel-
evant in other contexts where a single-valued
function is defined, and can be extended to cases
with multivalued vector fields. A case in point is
nematic liquid crystals where the director field,
E, is double valued in the sense that d and —d
describe the same physical situation. A choice
of direction for d at one point in a sample and the
requirement of continuity given a unique deter-
mination of the director field at all points of the
sample with the possible exception of two-dimen-
sional surfaces where d is undefined. Then the
quantization rule, Eq. (4), can be used without
modification to classify point singularities, which
have been observed experimentally.® The new
features resulting from the ambiguity in d’s direc-
tion are (i) N may now be half-integral as well

as integral,® and (ii) the sign of N is arbitrary as
can be seen by letting d— —d in the quantization
rule. An interesting class of unit director fields
is given in Rer. 5, d=(sinA cosB, sinA sinB,
cosA) where B=|N|¢ and

A=2arctan{[tan(6/2)]! ¥}, (16)

with 4 and ¢ the usual spherical angles. A singu-
larity exists at the origin with quantum number
|N].

In conclusion I have found that the additional de-
grees of freedom in superfluid *He lead to the
possibility of pointlike singularities, vortons, in
addition to the previously conjectured linear sin-
gularity structures, vortices and disgyrations.”
Vortons are quantized and are the endpoints of
one or more vortex lines in v,. [By Eq. (15) we
know that any surface enclosing a vorton has at
least one point where v, is singular which implies,
by continuity, the existence of singular Fs lines
emanating from a vorton.] An analogy can be
made between vortons and magnetic monopoles
with the Dirac string® being the analog of a vor-
tex emanating from a vorton. In the case of the
’t Hooft model of the magnetic monopole, the
magnetic charge® is a topological quantum num-
ber just as Eq. (4). Thus the study of vortons
would appear to be of wide interest.

I am grateful to members of the Syracuse Phys-
ics Department for helpful comments. I am also
indebted to Professor N. D. Mermin for several
iliuminating discussions.
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The diffusion of a set of consecutive divalent transition-metal ions has been measured
in AgCl. Their high-temperature activation energies are found to span the range from 1
to 2 eV and to exhibit a systematic dependence on the number of electrons in the d shell.
The relative migration energies can be quantitatively accounted for in terms of the elec-
tronic contributions to the energies of the ions, in the normal and activated positions, re-

sulting from crystal~field splittings.

An understanding of the properties of impurity
ions in ion crystals, such as the silver halides,
requires a consideration of the effect of the crys-
talline field on the electronic states of these ions.
In this Letter, this effect is shown to be reflect-
ed in the activation energies for the substitutional
migration of the first-row transition elements in
silver chloride. Although these notions have been
previously used in interpreting the partitioning of
transition elements in duplex scales on oxidized
alloys,' the present results are believed to dem-
onstrate clearly, for the first time, a quantita-
tive correlation between an ion transport phenom-
enon and the effects of the crystal field at the var-
ious sites in a simple halide salt.

The activation energies for diffusion in AgCl
of V¥, Cr?*, Fe?*, Co?*, and Ni** (all 34" ions)

have been determined from the temperature de-
pendence of the diffusion coefficient as measured
by the conventional tracer-sectioning technique.?
(The details of the measurements will be given
elsewhere.) These energies, along with those
previously reported for the diffusion of divalent
manganese® and zinc,* are presented in Table I.
Only the values derived from least-squares fits
to the high-temperafure data are shown since the
values in that range may be taken to be insensi-
tive to the codiffusion of polyvalent impurities in
the tracer solution and to residual impurities in
the host crystal, and thus are deemed as quite
accurate for the purpose of comparison. It may
be noted that the temperature range for the Ni%
measurements is small; this is due to the less-
sensitive surface counting method required by the

TABLE 1. Diffusion of first-row transition-metal ions in AgCl.

Diffusion g solute gy Ma2*
Temperature activation (eV)

range energy Expt. Individual
Tracer Configuration ©cC) (eV) (£0.03 eV) Avg. calc. ion cale.
V2t 34° 352—441 2.08 0.90 0.88 0.96
Cr’+ 3dt 325-440 1.25 0.07 0.07 0.11
Mn?* 3d° 249~420 1.18 0 0 0
Fe®* 348 274442 1.26 0.08 0.03 0.03
Co%* 3d" 328—441 1.39 0.21 0.27 0.17
Ni%* 348 393—441 1.88 0.69 0.88 0.72
Zn?* 3q 1 352—441 1.01 =<0.18 0 0

876



