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The nonlinear evolution of collisionless drift-wave instabilities and the associated plas-
ma transport have been studied extensively using particle-code simulations. It is found
that the quasilinear decay of the density profile gives rise to the nonlinear saturation.
The results also indicate that a new mechanism of wave absorption is responsible for the
observed anomalous energy transport, which, in general, is larger than the correspond-
ing particle diffusion and is also less sensitive to shear.

Low-frequency gradient-driven microinstabili-
ties in a magnetically confined plasma have at-
tracted wide-spread interest in recent years in
view of the fact that the resulting enhanced plas-
ma transport is detrimental to confinement. "
While much of the theoretical work has been di-
rected at obtaining relevant stability criteria for
these modes, ' their nonlinear behavior and the
associated plasma transport processes are far
less understood. '"' It is generally believed that
particle-code simulations should play a key role
in helping us to gain insight into these areas and

should provide guidelines for the analytic work.
With that in mind, we have conducted extensive

numerical studies on the drift-wave instability
driven by the finite-Larmor-radius effects in a
low-P collisionless plasma (universal mode), us-
ing a newly developed particle-simulation code. '
In this Letter, we will report on the comparisons
of our results with the existing linear theories.
Such comparisons so far are unavailable from
laboratory experiments. ~" We will also present

results concerning the nonlinear behavior of the
instability with regard to the mechanisms for
the nonlinear saturation and the anomalous plas-
ma transport, and the scaling laws in the pres-
ence of shear. It is our opinion that these results
will have an important influence on the future
development of the nonlinea, r theory for the gradi-
ent-driven mic roinstabilities.

A 2a dimensional (x, y, v„, v~, vg) bounded-plas-
ma model capable of handling a nonuniform sys-
tem has been developed for our purpose. ' The
system is uniform and periodic in y, and is non-
uniform in x where the plasma is bounded be-
tween two conducting walls. The main magnetic
field B, is perpendicular to the inhomogeneous x
direction with Bo, »Bo,. Particles reaching the
walls are reflected so as not to produce sheath
currents and other undesirable effects. '

Let us first present a linear theory pertaining
to our model. For the case of the universal
mode, the governing equation for the perturbed
potential y = y(x) exp(ih, y —iu&t) can be written
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where n denotes the species, v, =(T„/rn„)'", p„=v,„/v, „, a&*=A,T,~/rn;u&„, w, *=-&o*, u&;*=re*T;/
T„v=—(dn/dx)/n, L„—= 1/~lc~ is the density scale length, h~~ =h& cos8, where e is the angle between k
and B„ I& is the Bessel function, and Z is the plasma dispersion function. " Expanding Eq. (I) in the
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limit of k„p„&1, we obtain the usual mode equation of the form

d'y/dx'+Q(x, cog =0. (2)

We will now consider the solutions of Eq. (2) for several different eases. For a shear-free and con-
stant-~* (or z) case, Eq. (2) can be solved with the boundary conditions y(0) = y(L„)= 0, and the result-
ing dispersion relation is similar to Eq. (1) with —&'/&x' now replaced by 0„'—= (mw/L„) for m = 1, 2,

3, . . . . The normal modes are given by

y = sin(mmx/L, ).
For the case of a spatially dependent u* without shear, we expand Q in Eq. (2) around the maximum
to* at x„' i.e. , ~„*(x)= ~,„*+a&,„*"(x-x, )'/2, and obtain

(3)

Q g Il2( )2 Q ~[1 + (~ +~~a*)XO~+w~~*"XO0,(x —xg) /2]/TN
Z a pn (~+~an*)(Xoa -Xin)/T n

(4)

and

A=la(2l+1), l=0, 1, 2, .. . ,

y =II(((lo)"'(x x, ))—exp[-io (x —x,)'/2],

(5)

(6)

respectively, where H& is the Hermite polynomi-
al and 0 = +B. The choice of sign for o is such
that Im«0 as required from the proper bound-

ary conditions for outgoing waves at large x.'"
To simulate a collisionless plasma, "the stan-

dard dipole-expansion technique with finite-size
particles is used. ' The guiding centers of the
particles are loaded initially according to a pre-
scribed density profile and with spatially uniform
temperatures on a 64&& 32 (L„&&L„) spatial grid.
Maxwellian velocity distributions are also used.
The parameters of the simulations are m~/m,
=25, T,/T;=4, A.~, /6 =2, co„/&u~, =2, the aver-
age number density (n) = 8/h2, and a(rms of a
Gaussian particle) =1.5b.. The mesh size b, is
taken as the unit length. All the frequencies are
measured in terms of co~, . These parameters
give k„p; =0.12m and k, p;=0.49n where m, n
=1, 2, 3, . . . . Exact dynamics for the particle
pushing have been used with 4t = 0.5.

Two different density profiles have been used
in the calculations; the exponential profile given
by no(x, t = 0) = (n)I'LL„exp(- zx)/[1 —exp(- KL„)j
with ~ =O.OV 2nd the hyperbolic tangent profile
given by no(x, t = 0) = (n) (1 —vol, tanh[(x —x,)/l, ]}
with ~,=0.1, /, =24/m, and x0=32, as shown in
Fig. 1(a). For the exponential profile in which
co* is constant, the most unstable mode, from
Eq. (1), is found to be (m, n) = (1, 1) with m

=0.0064 and y=0.0048 for 8=88.5'. For the case
of the hyperbolic tangent profile, m* has a peak

where X& I~(b„—-) exp(- b„)Z(cv/v 2 0 ~~'Ug„)/W2k}, vg~

The dispersion relation and the localized normal
modes are, from Eqs. (2) and (4),

at +z =36 where ~max 0.12 and Kmax
Equation (5) gives co = 0.0055 and y= 0.0048 for
the most unstable mode (l, m) = (0, 1) for 8 = 88.5'.
Since the two growth rates are the same, we de-
fine (L„)= 1/0.07 as the average density scale
length to describe both systems.

The simulation results of the growth rates for
the two density profiles, measured in terms of
the average density modulation versus time, are
shown in Fig. 1(b) where (n, (x, t)) = J n, (x, t) dx/I „
is the spatial average of the most unstable n =1
mode. The agreement with theory is excellent.
The instability grows above the thermal noise at
t= 400 and exponentiates at the expected growth
rate. The saturation density modulation is about
10%. The corresponding frequencies are found
to be e = 0.004 for both cases at I;= 1200 and are
smaller than the theoretical estimates. This is
due to the quasilinear diffusion to be discussed
later.

The spatial structures of m=1 mode are shown
in Fig. 1(c). For the exponential profile case,
several normal modes in x have initially been ex-
cited which are eventually dominated by the m = 1
mode at t =880. The deviation of the mode struc-
ture from Eq. (3) is again due to the quasilinear
diffusion. For the hyperbolic tangent profile
case, l = 0 is the only unstable mode and its struc-
ture at the linear stage of the instability, I;= 560,
agrees very well with that given by Eq. (6).

As the instability develops, the density profile
undergoes a quasilinear change in time due to
the E && B drift as shown in Fig. 1(a). Initially,
the diffusion takes place at around the maximum
wave amplitude, then gradually evolves into a
plateau, and finally settles into a new stable con-
figuration. The density profiles then oscillate
around the new equilibrium with approximately
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FIG. 1. (a) Time evolution of the density profiles. (b) Growth of the density modulation for n =1 mode. (c) Mode
structures for n = 1 mode. {d) Parallel electron heat transfer patterns. (e) Average velocity distributions.

twice the drift frequency because of the existence
of the large-amplitude waves in the system by
this time. The profiles shown for t = 1600 rough-
ly correspond to the equilibrium states. The so-
lutions from Ecl. (5) have confirmed this observa-
tion; i.e., these final configurations are indeed
linearly stable. In general, the diffusion of the
electrons is found to be slower than that of the
ions. The amplitude of the modes has reached
a maximum at the time of the plateau formation
with eP, /T, =25 and 15', respectively, for the
two cases. Note the initial noise level here is
about 1.5'.

Let us now examine the energy transport proc-
esses associated with the instability which were
first pointed out by Coppi. " The simulation re-
sults have shown that in the linear stage there is
energy transfer from the parallel electron tem-
perature to the waves through inverse Landau
damping in the unstable regions. However, as the
waves grow in amplitude causing the quasilinear
diffusion, a significant amount of electron heat-
ing has been observed elsewhere. After the plas-
ma reaches the stable configuration, the heating
also stops. The electron heat transfer patterns
normalized by the initial temperature (T)„t are
shown in Fig. 1(d). The energy loss from the un-
stable regions is about 10' of the total parallel
electron thermal energy for the exponential case
and 7%%uo for the other. More than half of that

amount, however, is transported by the waves
back to the electrons in other regions causing
large heat transfer. This is due to the quasilin-
ear change in density which alters the local dis-
persions; however, the linear wave absorption
is also responsible for the heating in the hyper-
bolic tangent case." Most of the remaining
amount goes to the ambipolar drift, and relative-
ly little is kept by the waves. No ion heating has
been detected, except for the ion drift parallel to
B,. In Fig. 1(e), the average electron velocity
distribution functions corresponding to those in
Fig. 1(d) are shown along with the measured
phase velocity. The resonance regions are evi-
dently broadened by the instability. This is also
the case for the local distributions.

The nonlinear behavior of the instability re-
ported here does not seem to agree with the vari-
ous existing theories. '"' Instead, the quasilin-
ear diffusion in space is the dominant saturation
mechanism. The theoretical analysis has been
initiated with encouraging results and will be re-
ported later. "

Let us now look at the shear stabilization of
drift waves using the hyperbolic tangent density
profile. The sheared magnetic field is introduced
by adding B,(x) =yBo(x x, )/L, to B-o. We choose
xi = 36 so that J3, = 0 at the maximum II, . As the
shear length decreases, we have observed a re-
duction in the associated plasma transport with
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trons is much less sensitive to shear.
The detailed comparison of the simulation re-

sults with the theory for the shear stabilization
will be reported in a separate paper. '2

The authors wish to acknowledge useful discus-
sions with Dr. C. Oberman, Dr. Y. Y. Kuo, and
Dr. %. M. Tang.
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FIG. 2. Diffusion and conductivity coefficients ver-
sus shear.

the overall patterns similar to those of the shear-
less case. Again, no ion heating has been detect-
ed. The results also indicate that the saturation
for the partially stabilized drift waves is due to
the quasilinear density decay.

To estimate the particle diffusion and heat con-
ductivity coefficients, the diffusion equation,
6 (no, T,s)/6t = (P~,&,~)3'(no, T, ~,

)/~x', is used. The
averao'e coefficients versus shear for the hyper-
bolic tangent profile are shown in Fig. 2. For
the shear-free case, the measured D~ is about
28%%uo of the values given by the Bohm diffusion,
D~ -cT,/16eBo, and the turbulent diffusion, D~

y/l't&', by Kadomtsev, ' while K,~ is about four
times bigger. These are also true for the shear-
free exponential case. The Pearlstein and Berk
criterion for the total stabilization by shear' is
(L„)/L, ~ 0.24 for our case. The results shown
in Fig. 2 approach this limit asymptotically if
extrapolation is used. However, our results dif-
fer from the estimate given by Ref. 8. Figure 2
also shows that the heat conductivity for the elec-
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