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Long-Time Tails and the Large-Eddy Behavior of a Randomly Stirred Fluid
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The long-wavelength and low-frequency behavior of an incompressible, randomly
stirred Quid is determined in d dimensions by renormalization-group arguments. A
free-field fixed point, which describes conventional hydrodynamics, is stable for d 2

although we find nontrivial corrections to the leading behavior. These corrections give
rise to long-time tails in a fluid near thermal equilibrium. A nontrivi31 fixed point con-
trols the behavior for d &2, which is determined to all orders in e =2-d.

(1a)

(1b)V.v=0

where v is the fluid velocity, P is the pressure,
v, is the (unrenormalized) viscosity coefficient,
and A is a perturbative parameter which will
eventually be set equal to unity. The random
force f is assumed to be a Gaussian random vari-
able whose Fourier transform has a correlation
function

&f;(k, ~)f, *(k', ~'))

= 2Dok'b (k —k') b (&u —w')D;, (k),

where D, , (k) = 5,, —k,.k,./k'.

(2)

There has been considerable progress recently
in the application of renormalization-group meth-
ods to the study of critical dynamics. ' We apply
these methods here to analyze the long-wave-
length, low-frequency properties of a (noncriti-
cal) incompressible fluid subject to a random
force. Analysis near a free-field fixed point d &2
produces the familiar long-time tails in the re-
normalized viscosity, and predicts new singulari-
ties at small wave numbers as well. Renormali-
zation-group theory leads naturally to a unified
treatment of these singularities, and provides a
scaling description of the breakdown of hydrody-
namics which occur for d &2. These results per-
tain both to a fluid near thermal equilibrium and
to the large eddies of a randomly stirred turbu-
lent fluid.

We consider the dynamics of a system de-
scribed by the Navier-Stokes equation:

B,v+~v Vv= —XVP+ vpV v+f,

The above equations can be interpreted in at
least two different ways: For a fluid near equi-
librium at temperature T, f can be regarded as
a noise field simulating the effects of the molecu-
lar degrees of freedom. The fluctation-dissipa-
tion theorem gives Do= v,kT. Alternatively, (1)
can be regarded as a model of homogeneous, iso-
tropic turbulence' with a Gaussian random, mac-
roscopic stirring force generating a statistically
steady state. This behavior of the random force
holds for small k and + provided that the spatial
integral of the average force vanishes. In the re-
gion where (2) holds, the input of energy into the
system is proportional to Dpk'. Since energy is
dissipated at a rate proportional to vpk', we ex-
pect none of the cascade effects in this small-k
region which are believed to characterize turbu-
lence at large wave numbers. "

A quantity often studied in the theory of fluids
is the velocity correlation tensor'

G, , (k, co) = (v, (k, ~) U,. *(k, &u)).

In the present case this can be written in the
form'

G, , (k, (u) = 2 Re[XD;,(k)/[- i(o+ k v(k, u))]], (4)

where X =D,/v, is the static susceptibility and
v(k, &u) a kinematic viscosity. We will show that
the dynamic renormalization group (DRG) drives
the system to a fixed point where v(k, co) = v, a
constant. Asymptotic corrections [corresponding
to the t "~ tail in the Green-Kubo integrand, ' '
v(k= 0, t)] result from the approach to the fixed
point above two dimensions.
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Also of interest is the spectral density function

E(k) =k" 'J „drat;,(k, ~),

0 (A F2'W (6)

The procedure consists of two parts: (a) Elimi-
nate from (I) modes v,. '(k, &u) such that Ae ' &k

& A by averaging over f, '(k, ~); and (b) rescale
k, ~ and the remaining fields v, '(k, &u), replacing
v (k, ~) by gv;(ke', &ue

' ), where o.(l)=J+l'z(lI)
%e choose the scale factor &=e'"'+ ~' which en-
sures that the coefficient of 8, in (1) is unrenor-
malized.

As a result of step (a), Eq. (la) takes the form

the integral of which is proportional to the total
kinetic energy of the fluid. E(k) can be shown to
behave like k" ' with no correction terms in the
regime where (2) holds. ' However, deviations
from (2) and from the assumed Gaussian behavior
of the random force can lead to corrections to
this result. '

The DRG procedure has been extensively dis-
cussed in Ref. 1. As usual, the Fourier modes
will be cut off at large k:

of order e"'. When d) 2, F(l) goes to a trivial
fixed point X =0. The terms (' in (7) can be ne-
glected to this order,

The calculation sketched above can be done
more generally without the restriction i ei « l.
Requiring for convenience that v(l) remain unre-
normalized along a trajectory, which determines
z(l), we find that for arbitrary e, the equations
for X(l) and z(l) take the form:

dk/dl =[2@ -y(x)] A. ,

z(l) =2 —q (7). (9b)

The function y(X) is generated from self-energy
diagrams and includes the effects of the term g'.
The simplicity of these equations [note that the
same function y appears in both (9a) and (9b)] is
a consequence of Galilean invariance. This re-
quires that X be renormalized only by a trivial
multiplicative factor as shown in (Sb).'0 We have
verified this consequence of Galilean invariance
to all orders in perturbation theory. ' It is possi-
ble to argue on physical grounds that the function

y is positive, an assertion that is easily verified
to O(V) from (8).

Renormalization-group theory" leads to a ho-
mogeneity equation for G„(k,v, X) valid for small
k and co:

y,VP'+ —v,V'v'+f '+ g ',
G „(k,(u, x) =e"&'lG . (ke', (ue &'& X(l)),

with

(10a)

d v/dl = (—2+ z) v+ A'D/16m v',

dX/dl = (z -1—2d)X,

dD/dl = (- 2+ z)D + X'D'/16m v'.

(8a)

(Sb)

(Sc)

For d= 2 —e, X(l) tends to a nontrivial fixed point

where g' contains terms of higher order in v'
than those explicitly shown and also terms which
contribute a k, ~ dependence to v, and X,. Step (b)
then results in an equation like (1a), with extra
terms generated from g' and new coupling con-
stants v(l) and X(l). The Gaussian random force
now obeys an equation similar to (2), but with a
renormalized strength D(l). It can be shown that
the ratio D(l)/v(l) is constant along a renormali-
zation-group trajectory which is consistent with
the fluctuation-dissipation theorem. '

Differential recursion relations for v(l), X(l),
and D(l) are easily constructed near two dimen-
sions. To second order in the reduced coupling

X(l) = D'~(l)x(l)/v'~(l),

we find

n(l) = J 'dl'z(l'). (10b)

Similar relations are easily constructed for ar-
bitrary velocity correlations. Defining a frequen-
cy-dependent viscosity at small k as the pole of
(4), ice =k'v((o, X), we have

v(ur, X) =e" "~'lv(ve"~') F(l)).

For d)2, A. (l)-0 for large l and we haves(l)
= 2. The asymptotic theory for a fluid near equi-
librium is conventional hydrodynamics. The re-
sult z = 2 together with an analysis of the correc-
tions to the asymptotic scaling behavior" leads
to

v((u) = v(1+C~(i(u/2v) " 'l ') .

This represents a long-time tail, v(t) -f " '
Perturbation theory gives C, = 7Di/120mv'

For d =2, g =0 is still a stable fixed point, but
A. ( l) relaxes very slowly to its fixed-point value.
This situation is analogous to what occurs for
static isotropic spin systems in four dimensions.
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From the above analysis we obtain

v(cu) - [In(1/(u)]'I'. (13)

v(u&)- (1/(u)(' ""('"', d(2, (14)

which gives v(t)-t I('+e). A f ' ' asymptotic
law in one dimension has been suggested by Pom-
eau and Hesibois. "

Results such as (10) can also be applied to the
large-eddy behavior of a randomly stirred fluid.
Defining v(k) as the renormalized k-dependent
viscosity at ~ =0, we find, for ~s( small,

This result has also been obtained by arguments
based on renormalized perturbation theory and
mode-coupling formulas. " Our derivation of (13)
takes explicit account of vertex corrections,
which are often neglected in mode-coupling anal-
ysis. We note that (13) is within the rigorous
bounds proved by Wolynes. "

For d &2, a nontrivial fixed point becomes sta-
ble given by the solution of y(X*) = s/2. In this
case s -z* =2 —s/2 for large l, a result which
holds to all orders in e. A general result follows:

example, the term V'~v scales as e ' ~' and can
then be disregarded asymptotically. Irrelevant
variables can contribute to higher-order terms
in expansions such as (12), (13), and (14). Simi-
lar arguments apply to non-Gaussian contribu-
tions to the force-force correlation function.

It is interesting to speculate on the large-wave-
vector behavior of correlations generated by (1).
It is in this regime that the correlations are ex-
pected to exhibit highly nontrivial behavior char-
acterized by a turbulent cascade. ' The results
presented here suggest that a perturbative re-
normalization-group approach would soon gener-
ate an intractably large effective coupling X at
these wave vectors Qualitatively similar diffi-
culties have been encountered in certain theories
of strong interactions. "

This work was carried out independently at
Temple and Harvard University. We wish to
thank M. Droz, M. Green, and J. Gunton at Tem-
ple and P. C. Martin and E. Siggia for helpful dis-
cussions.

v(k) = v[1+(D/8mv'e)(k '-A ')]'~. (15)

This expression goes smoothly into logarithmic
behavior in two dimensions. In exactly d = 3, per-
turbation theory gives v[1 —(D/32w v')(3 + 4s')k].

More generally the function v(k, +) defined in
Eg. (4) can be represented by a nontrivial scaling
function for d &2. We find

v(k, (u) = v(2k) ~'f ((i(u/») (2/k)" ),
where

f(x) =1 —-', s ——,'s(l —ln2)x+. . . , x«l,
&g +. . . , X&& ~)

to first order in g =2-d. These results were ob-
tained from a Feynman-graph expansion with X*
= (8m&)"'+O(e"'), its fixed-point value.

We can also present our results in the form of
a dispersion relation, ~ =Q(k, Ã), for the hydro-
dynamic mode in a fluid near equilibrium. The
scaling result is summarized by

n(k, x) = " ' n(k ' r(l)) (18)

To leading order we obtain 0-k'(1+4„k"') for
d &2, 0-k'[in(1/k)]+' for d =2, and 0-k'+" ' for
d &2.

We have disregarded the terms contained in P'
in Eg. (7). Such terms may already be present
in the original model (1). It is easy to see that
all higher-order terms (in v and V) are irrel-
evant compared with those proportional to X. For
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The nonlinear evolution of collisionless drift-wave instabilities and the associated plas-
ma transport have been studied extensively using particle-code simulations. It is found
that the quasilinear decay of the density profile gives rise to the nonlinear saturation.
The results also indicate that a new mechanism of wave absorption is responsible for the
observed anomalous energy transport, which, in general, is larger than the correspond-
ing particle diffusion and is also less sensitive to shear.

Low-frequency gradient-driven microinstabili-
ties in a magnetically confined plasma have at-
tracted wide-spread interest in recent years in
view of the fact that the resulting enhanced plas-
ma transport is detrimental to confinement. "
While much of the theoretical work has been di-
rected at obtaining relevant stability criteria for
these modes, ' their nonlinear behavior and the
associated plasma transport processes are far
less understood. '"' It is generally believed that
particle-code simulations should play a key role
in helping us to gain insight into these areas and

should provide guidelines for the analytic work.
With that in mind, we have conducted extensive

numerical studies on the drift-wave instability
driven by the finite-Larmor-radius effects in a
low-P collisionless plasma (universal mode), us-
ing a newly developed particle-simulation code. '
In this Letter, we will report on the comparisons
of our results with the existing linear theories.
Such comparisons so far are unavailable from
laboratory experiments. ~" We will also present

results concerning the nonlinear behavior of the
instability with regard to the mechanisms for
the nonlinear saturation and the anomalous plas-
ma transport, and the scaling laws in the pres-
ence of shear. It is our opinion that these results
will have an important influence on the future
development of the nonlinea, r theory for the gradi-
ent-driven mic roinstabilities.

A 2a dimensional (x, y, v„,v~, vg) bounded-plas-
ma model capable of handling a nonuniform sys-
tem has been developed for our purpose. ' The
system is uniform and periodic in y, and is non-
uniform in x where the plasma is bounded be-
tween two conducting walls. The main magnetic
field B, is perpendicular to the inhomogeneous x
direction with Bo, »Bo,. Particles reaching the
walls are reflected so as not to produce sheath
currents and other undesirable effects. '

Let us first present a linear theory pertaining
to our model. For the case of the universal
mode, the governing equation for the perturbed
potential y = y(x) exp(ih, y —iu&t) can be written

CO +97

a n 11 tavIlvtcx
p 2(h 2 92/9x2) h p

2 92/sx2

where n denotes the species, v, =(T„/rn„)'",p„=v,„/v,„,a&*=A,T,~/rn;u&„, w, *=-&o*, u&;*=re*T;/
T„v=—(dn/dx)/n, L„—= 1/~lc~ is the density scale length, h~~ =h& cos8, where e is the angle between k
and B„I& is the Bessel function, and Z is the plasma dispersion function. " Expanding Eq. (I) in the
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