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Lattice-Dimensionality Crossover Effects in Quasi-d-Dimensional Magnetic Materials
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We show that lattice-dimensionality crossover phenomena may be usefully analyzed by
expansions in R—:J'/t, where J and J' are the interaction constants in d and 3 —d lattice
directions (d=1 or 2). The nature of the crossover phenomena is predicted to depend on
the thermodynamic function considered, on sgnP, and on. sgnJ. Comparison with experi-
ment confirms our predictions, and we present the first unambiguous experimental dem-
onstration of crossover in the ferromagnetic susceptibility.

Quasi-d-dimensional magnetic systems, con-
sisting of arrays of nearly isolated chains (d—= &)

or layers (d —= 2), can be described as having cou-
plings J between z nearest neighbors in d lattice
directions, and O''=—BJ' between s' nearest neigh-
bors in the remaining 3-d directions. ' If we re-
place quantum-mechanical spin operators by n-
component unit vectors, 3 then we may take for
the interaction Hamiltonian

(4) S (n) ~ S (n)

(s-&)S (n) ~ S (n)

where the angular brackets denote nearest-neigh-
bor pairs of sites, and the first summation is
over pairs of spins in d lattice directions while
the second is over pairs of spins in the remain-
ing 3 —d lattice directions.

Intuitively, one expects such systems to be
largely d dimensional in character for T»T, (R),
since only as T -T,(R) will the correlations aris-
ing from the weaker interaction J' become mani-
fest. A crossover from d-dimensional to three-
dimensional behavior "should" occur at some
T"(R). However some experiments show d-di-
mensional behavior even for 7 extremely close
to T„while others show d =3 behavior well above
T, already. Here we seek to understand these
data by examining general features of thermody-
namic functions f (R, T) as T-T,(R); we show
that the observability of a lattice-dimensionality
crossover depends strongly on the function f, on
sgnJ', and on sgnJ. We also present new data
that provide the first unambiguous demonstration
of crossover in the ferromagnetic susceptibility.

(I) Dependence on function f(R, T). —A neces-
sary condition for detecting a crossover as T
-T,(R) is that deviations of a measured function

f(R, T) from f (0, T) exceed the experimental res-
olution. Since f (R, T) is analytic for T 4T, (R),
we may write f (R, T ) =f (0, T ) +f(') (0, T )R +0(R'),
where f(')(R, T) =&f (R, T-)/BR. Then &f (R, T)-=[f(R,T) -f(o, T)]/f(o, T) =Rf"'(o, T)/f(o, T)
+O(R'); for sufficiently small R, we may trun-
cate at O(R), and solve for the temperature T (R)
at which Af becomes detectable. If f (R, T) de-
notes either the magnetization M(H, R, T) or the
isothermal susceptibility X(II =0, R, T), then
f(')(0, T) =z'(J/hT) f (0, T))((0, T), where X=X/
Xc„„., = )(T/C (C is the Curie constant); hence'

I f(R, T) =z'(JILT)Rg(0, T)+O(R'). (2)

For the specific heat C„(JI=0, R, T), on the other
hand, one has'

~f(R, T) =O(R'),

so that, for a given material, one would expect
T (R) to be larger for M and )( than for Cz. '

(II) Dependence on sgn J'.—From (2) we see
that sgn4f= sgn J', so that a ferromagnetic or
antiferromagnetic interaction J' will result in an
inc rease or decrease, respectively, of the func-
tion f (R, T) with respect to f (0, T). However for
Cz(R, T), bf is independent of sgnJ'.

(III) Dependence on sgn J.—The function X(R
=0, T) in (2) depends strongly on sgnJ. For J)0,
X(0, T) diverges at some T,(0) which, for small
R, should be only slightly smaller than T,(R), so
that the fractional deviation bf (R, T) will become
very large as T-T,(R).' For J &0, however,
)((R = 0, T) remains finite and small-valued for all
T; replacing )( in (2) by the "upper bound" X=T/
28 [8—=zS(S+I)J/3h], we get bf([3z'/2zS(S+1)]R.
Thus ~X=A, so that for 8&1.0 ', it will be vir-
tually impossible to detect a crossover in X or M.

Although these results are, strictly speaking,
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valid only for the classical Hamiltonian (1), we
expect them to be qualitatively correct also for
quantum systems. " %e now show that this analy-
sis provides a useful framework within which to
explain the following hitherto unclear experimen-
tal results on quasi-d dimensional materials.

(a) X for 7&0 (d=—1 or 2): Although many ex-
periments exist on d =—1 and d=—2 antiferromag-
nets, with 10 ' & 1R 1& 10 ', lattice-dimensionality
crossovers have not been detected in X. For ex-
ample, (i) for K CoF, and Rb, CoF, (d=—2, n = 1),
good agreement between X and d = 2 theory has
been found for 0 & T & 1.5T, (thus including T,)",
(ii) for K MnF, and Rb,MnF, (d=2, n= 3), y, i

and

X~ are well-described at low T by spin-wave the-
ory for a d= 2 antiferromagnet with small spin-
space anisotropy x,8 For T o Tc the data agree
with high-T series for d = 2, n = 3.'

(b) X for J')0 (d—= 2): Contrariwise, y data on
the d= 2 Heisenberg ferromagnets (C&H»+, NH, ),-
CuCl, (l= 1, 2, . . ., 10) exhibit clear lattice-dimen-
sionality crossover as T -T,(R)+, even though

1Rl is as small as 10 '-10 '."" For example,
Fig. 1 displays Xii for l=1 (R, =+5.5&&10 '), l=2
(R, —= -8&&10 '), and I =3 (R, =—-6&&10 '). Also
included are very recent data" on KCuF, (R
=+2.1&& 10 ')." For t= kT/J )0.8—, all data are
found to agree with high-T series (d=2, n=3)."
For lower t, the series prediction becomes in-
creasingly unreliable; however, the data for l
= 1-3 still coincide for t )0.40, and the data for
I = 1, 3 for t ) 0.26. In accord with point (II)
above, the deviations for materials with J'&0

and with J' &0 are upward and downward, respec-
tively. To test (2) quantitatively, we relate the
temperature t2" = 0.40 at which X for l = 2 deviates
from the common I =1, 3 curves (R, —= lR, l

=—0.07
&& 1R, 1), and the temperature t, =—0.255 at which
the l =1, 3 curves deviate from each other. If
bf (R, T) has about the same value when we per-
ceive a deviation in Fig. 1, then from (2)

IR, ix(R=0, t,")/t, "= IR, lx(R=0, i.")/t.". (3)

1Q4—

'X T/C

Equation (3) is roughly obeyed, since R,g(0, t, ')/
t, =—0.13 and 1R,g(0, t, )/t, "=—0.040. The source
of the discrepancy is that for X(0, t ) we have used
the experimental values [g(0, t,")=600, )7(0, t, )
=20], which are largely affected by the small
spin-space anisotropies; their influence is clear-
ly evidenced by the curve for K,CuF, ." Noting
from Fig. 1 that for l =1, the crossover occurs
at X=—10', we show in Fig. 2 that at just this val-
ue of X there occurs a "kink" in the log-log plot
of X versus 1 -T, /T, and the critical exponent y
changes from a d = 2, n = 1 value of 1.75 to a d = 3,
n = 1 value of 1.25. (This kink cannot be due to a
"smearing out"" of T, since the error in T, is
negligible at the crossover point. )
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FIG. l. X1) corrected for demagnetizing effects, for
(C)H2l+(NHg)2CuC14 (l = 1,2, 3) and for K,CuF4 (see Ref .
12) .

FIG. 2. y11 for l=1 (7, =8.908+0.008 K) and l= 10
(T, =7.92 +0.01 K); the open and closed symbols indi-
cate measurements made on two different samples of
each material. The circles and triangles are data for
the next-preferred and hard axes, respectively (i =1).
Uncertainties in T~ and in demagnetizing corrections
are indicated by horizontal and vertical bars, respec-
tively.
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The same crossover phenomenon is observed
for l =10, but at a value of y about 10-20 times
larger, in accord with the fact that g» —= —3
~10 ' is smaller than R,. The prediction that
the crossover point for X is determined by the
product iRLf(t")/t" is again roughly confirmed,
si~c~ iR,)y(i»")/in" =—0.10 [with i„"—= 0.23,
)i(i»") =8000].' A somewhat different analysis
was given in Ref. 10.

(c) CH (d =1, 2): Clear evidence for ].attics-dj
mensionality crossover is also found in C~ stud-
ies on d—= 1 compounds' and d —= 2 Heisenberg fer-
romagnetics, ""since here the crossovers ap-
pear as small X-type anomalies (d =3 divergenc-
es), superposed upon smooth, nondivergent con-
tributions of the ideal (R =0) systems. Empiri-
cally, the energy stored in the A. anomaly is often
small and decreases rapidly with iRi."'" The
prediction' [point (I) above] that T"(R) will be
larger for X than for C~ is confirmed, e.g., in
the 3=2 copper compound: Whereas X is affected
for T& 1.6T, (Fig. 1), there is no effect of R on
C~ for T~ 1.2T,.'

(d) M for J'& 0 (d = 1): Magnetization data in
fields up to saturation, and at temperatures
above, at, and below T,(R) have recently been
obtained" on Mn(NBH, )2(804)2 (d=1, n, =—3, and

i Ri —= 10 '). For all T, agreement with the cal-
culated d = 1 behavior was found, there being no
apparent indications of crossover. "

(e) M for Z& 0 (d =—2): By contrast, magnetiza-
tion data for T & T, for (C,H,NH, ),CuC1, (d =2,
n—=3, and R —= —8x10 ') show the characteristics
expected for a d =3 ordered antiferromagnetic
array of ferromagnetic layers. "'

(f) M, for J&0 (d=2): The spontaneous stag-
gered magnetization, M, =M(H =0, R, T),"for the
antiferromagnets K,NiF„and Rb,MnF, (d =—2, n
—= 3) has been studied by NMR" in the spin-wave
region and by neutron scattering"'" " in the crit-
ical region. At all measured T, d = 2 behavior
is observed, even though T, (R) was approached
as closely as 1 —T/T, —=3.3 &&10 ' for K,NiF, ."
However, the "order" below T,(R) is definitely
d —= 3 (e.g. , in the neutron experiments M, is de-
rived from a d=3 Bragg Peak). That, neverthe-
less, M, shows essentially a d =2 exponent (p = 8)
can be understood from (1), realizing that iRi
&10 ' for these materials. Very recently, y for
~F, (X=Ni or Mn) has been measured for T
& T„"and d =—2 behavior (y = 1.75) is observed
down to 1 —T,/T= 0.01, with no sign of —crossover
yet. Also, in K+F4 small spin-space anisotro-
pies (0.2-0.4%) cause the critical behavior of M,

and X to be d =—2 Isinglike. Comparing X for
~F, with y for the l =10 Cu salt (iR|oi =—3 &&10 ',
1- T,/T"=—0.02), we expect from (2) the cross-
over for ~F, at still lower values of 1 —T, /T,
since, for ~F4i (i) iRi is probably smaller,
and (ii) i Ji/kT, is smaller (—= 1 and 5 for Ni" and
Mn", respectively, compared to 4 for Cu").
Clearly, for ~F„d=3 behavior for M, and j
can be expected only in an extremely narrow
range around T,(R). Moreover, the range will
be even narrower belosv than above T, (R), since
)t =C,„„ir r, (1 —T,/T) '", with C /C+ =0.0265
for d =2, ~= I, ." If a g crossover should occur
at, say, 1 —T,/T =10 ', one would expect an M,
crossover at 1 —T/T, —= 1.3 &&10 ', which would
explain why the observed d —= 2 behavior of M, ex-
tends so close to T,.

(g) M, for J& 0 (d —= 2): Results for the spon-
taneous direct magnetization, M, =M(II =O, —R, T),
are only available for K,CuF, .'4 In comparing
with the other d —= 2 Cu ferromagnets [see (b)
above], we conclude from the fact that R —=2.1
&10 4 that a crossover in' should occur at t
=0.33, corresponding to 1-T,/T —=0.15. This
explains the d =3 critical behavior observed for
both &

"and I .'4
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