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We announce a new method for proving the existence of phase transitions and of spon-
taneous symmetry breaking. This method is then applied to various models, including
a multicomponent [{cp ~ y ) J3 quantum field model and classical, isotropic Heisenberg
model.

Phase transitions and spontaneous symmetry
breaking are phenomena observed in macroscopic
systems (mathematically, systems with an infi-
nite number of degrees of freedom). Many cur-
rent theories of the fundamental interactions in-
volve as a central theoretical concept the possi-
bility that continuous symmetries may be broken
by the physical vacuum.

Because of the basic role that phase transitions
and symmetry breaking play in physics there has
been much work devoted to a rigorous analysis of
these phenomena. Previous work in this field has
relied on finding exact solutions of certain (two-
dimensional or mean-field-type) models'' or on
the Peierls argument' and its extensions. ' (Addi-
tional techniques have been developed for infinite-
range interactions. ') None of the methods in
Ref s. 1-4 has been successful in proving that a
continuous internal symmetry can be spontaneous-
ly broken in three or more dimensions. (It is
well known that this cannot occur in one or two
dimensions. ')

Here we describe a new strategy for proving
the existence of phase transitions in three or
more dimensions and apply it to models in quan-
tum field theory and statistical mechanics. Our
methods not only serve to exhibit broken continu-
ous symmetries but also prove the existence of
phase transitions for systems with no internal
symmetry. In principle our methods also apply
to systems in which translational invariance is
not present because of impurities. Full details
and further applications will appear later. '

The central idea behind our strategy is con-
tained in an a priori bound on the infrared singu-
larity of the two-point function in momentum
space. Let E(k) be the Fourier transform of the
two-point function (S, S,. ) [or (cp(x) q(y))]: E(k)

0 & E'(k) & const jJk', (2)

where J denotes the strength of the nearest-neigh-
bor coupling. In field theory J is determined by
the commutation relation

~ot(x, 0)»q ~(y 0)»j~=-«t~~(x —y).

Here H denotes the Hamiltonian of the theory and

y,. is the jth component of the field y. (B) For
suitable values of the parameters (temperature,
coupling constants) we show

Taking the Fourier transform of (1) and combin-
ing it with (2) and (3) we conclude (in the case of
three or more dimensions)

e «y —const J ', (4)

which is positive for J sufficiently large. Note
that in one or two dimensions the Fourier trans-
form of k ' is divergent; hence (4) does not
apply. We shall see that step A is ea,sy in quan-
tum field theory whereas step B is easy in classi-
cal spin systems.

Next we illustrate our ideas in three models.
Model 1: (y y)' quantum field model in three

sPace time dimensions. W-e consider an N—-com-
ponent (N =1,2, 3) scalar field y with Hamiltonian

is a positive distribution of the form

E(k) =et'(k) +E'(k).

For a symmetric theory where (S,) =0, ct is the
long-range order and n 4 0 implies the coexis-
tence of pure phases with spontaneous magnetiza-
tion. In order to prove long-range order (& &0)
we need an upper bound on E'(k) (step A) and a
lower bound on (S,S,) (step B). (A) The upper
bound takes the form
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density

e(y) =a, (q) + X(y y)' —cJ(y y) +counterterms (5)

Here Ho(y) is the Hamiltonian density of a free field of mass mo&0. The counterterms involve vacuum
energy and mass renormalization and are independent of o. No field strength renormalization is re-
quired.

The vacuum (Wightman) state for this model has been rigorously constructed by several authors, '
for all A. &0, mo&0, and o. Since there is no field strength renormalization the Kallen-Lehmann rep-
resentation for the bvo-point function has the form

(q(x) y(y)& =n+ fdp(m') f[d'k/(2rr)']e'" C" ''~(k'+ m') ', (6)

where dp &0, and Jdp(m') =N(the number of components of y), corresponding to J=1. See Ref. 7 for
details. Equation (6) completes step A. To complete step 8, consider the following:

(:y(0) y(0):&=lim((y(x) p(0)& Nf[d-'k/(2rr)']e' k 'j=n+ fdp(m2) f[d'k/(2rr)'][(k'+m') ' k'-]~or.

Hence, in order to prove that n & 0 it now suffices
to show that classical one-component spin and H is as in (8).

At each lattice site j there is a single-spin distri-
bution

provided o is large enough (for fixed A, and mo).
In Ref. 7 we use the functional integral to prove
that for fixed A. and mo

&:~(0) ~(0):&&o,

for all o greater than some finite o,. Our results
establish continuous symmetry breaking and the
existence of Goldstone bosons in this model.

Model 2: Classica/ IIeisenberg nzode/. —In this
model S, =0,. is a classical N-component spin with

IS I'=Z(~ ')'=&.

The spins are coupled via the Hamiltonian

-PH = Q Jcr& 0,.

exp(ha, .)d v (cr,.),
where dv is a positive measure on the real line
that may not have any symmetry, but has the
property that there exist 5&0 and e&0 such that

p{( ag 6)) & e p{(tr (g))) ) s

Then, for J large enough, in three or more di-
mensions there is at least one value k, (J) at which
(cro&(k) is discontinuous as a function of k. Hence
there is a phase transition (at k,). The proof is
a variant of the strategy described above [step A
is as in model 2; step B follows from simple es-
timates on the pressure as a function of J that
are uniform in h; finally one shows that

lim (cr,&(k) & 6,
h~+ ~

The infinite-volume Gibbs state is defined as a
limit of periodic states. Step A is accomplished
by using the transfer matrix T, and the commu-
tator inequality which is the lattice analog of (3):

.'[cr, [cr, T'—]]- (u) 'r,
with cr =cr, a and a a unit vector. Since (o, a & =].,
we have, in three or more dimensions,

1 & e + constJ ',
where the constant is independent of J. Thus, for
large 4, & is positive. This gives a lower bound
on the critical temperature. For the three-com-
ponent three-dimensional model the bound is =,
of the value obtained by high-temperature series.

~ode& 3: Phase transitions for spin systems
svithout symmetry. —In this model S,. = o, is the

iim (e,&(k) & -6,

from which our assertions follow].
We have also found models similar to model 3

for which translational symmetry is globally
broken and which phase transitions. We refer
the reader to Ref. 7 for further details.
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the two-dimensional Ising model [L. Onsager, phys.
Bev. 65, 117 (1944)]; and Lieb's solution of the ice prob-
lem [see E. H. Lieb, in Statistical Mechanics and Quan-
tum I'ieEd Theory, edited by C. DeWitt and B. Stora
(Gordon and Breach, New York, 1971)j. See also T. H.

Berlin and M. Kac, Phys. Bev. 86, 821 (1952).
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perconductivity —see N. N. Bogoliubov, Zh. Eksp. Teor.
Fiz. 34, 58 (1958) [Sov. Phys. JETP 7, 41 (1958)];
W. Thirring and A. Wehrl, Commun. Math. Phys. 4,
801 (1966), and references given ther" —; and maser
and laser model- —see K. Hepp and E. H. Lieb, Ann.

Phys. (N.Y.) 76, 860 (1972), and in Constmctive Quan-
tum Ilierd Theory, edited by G. Velo and A. Wightman

(Springer, Berlin, 1978).
The original argument is by R. Peierls, Proc. Cam-

bridge Philos. Soc. 32, 477 (19M). The argument has
been extended to a variety of classical lattice systems
{see R. Griffiths, Phys. Rev. 136, A437 (1964); R. Do-
brushin, Funkts. Anal. Prilozh. 2, 44 (1968) [Funct.
Anal. Appl. 2, 302 (1978)]),to a restricted class of quan-
tum systems [D. Robinson, Commun. . Math. Phys. 14,
195 (1969)], and the (p )& field theory, J. Glimm, A. Jaf-
fe, and T. Spencer, Commun. Math Phys. 45, 208
(1975).

There is an enormous literature on this subject be-

ginning with B.Griffiths; see Statistica/ Mechanics and
Quantum I'ieEd Theory, edited by C. DeWitt and B. Stora
(Gordon and Breach, New York, 1971), and references
given there.

See F. Dyson, Commun. Math. Phys. 12, 91 (1969);
R. Israel, to be published.

6See N. D. Mermin and H. Wagner, Phys. Bev. Lett.
17, 1133 (1966); N. D. Mermin, J. Math. Phys. (N.Y.)
8, 1061 (1967); H. Ezawa and J. A. Swieca, Commun.
Math. Phys. 5, 880 (1967); S. Coleman, Commun. Math.
Phys. Bl, 259 (1978); B. L. Dobrushin and S. B. Shlos-
man, Commun. Math. Phys. 42, 31 (1975).

J. Frohlich, B.Simon, and T. Spencer, to be pub-
lished.

The original control of ultraviolet divergences and
the "linear bound" were obtained by J. Glimm and
A. Jaffe, Fortschr. Phys. 21, 327 (1973); and further
developed by J. Feldman, Commun. Math. Phys. 37,
93 (1974). Completion of the construction of the theory
for small coupling was obtained independently by
J. Magnen and B.Seneor, to be published. The con-
struction for arbitrary coupling is due to J. Feldman
and K. Osterwalder, to be published; and J. Frohlich,
to be published. Useful additional bounds may be found
in. E. Seiler and B.Simon, to be published; and Y. Park,
to be published.
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Neutron scattering from the uniaxial ferroelectric Pb5Ge&O&& shows a guasielastic com-
ponent in addition to the soft ferroelectric mode. At low temperatures, this scattering
increases but can be suppressed by an applied electric field and probably arises from
scattering by static domain walls. This scattering also has a maximum near T~ which
is largely field independent and which we suggest may arise from scattering by the walls
of moving domains or clusters.

The neutron scattering fromthe fluctuations at
several structural phase transitions has been
found to consist of two components; one compo-
nent has a frequency comparable with normal
phonon frequencies but the other corresponds to
fluctuations which decay on a much longer time
scale. In some cases, Nb, Sn for example, ' the
linear coupling between the order-parameter fluc-
tuations and the phonon-density fluctuations pro-
vides a possible mechanism for the very slow
fluctuations. In other cases, SrTiO, for exam-
ple, ' it is more difficult to account for the slow
fluctuations. It has been proposed that they arise
from (a) relaxations of the local order parameter
near a defect, "(b) the motion of large clusters
or domain walls (solitons) which are in dynamic

equilibrium near T„' or (c) explicitly nonclassi-
cal fluctuation effects. ' In this Letter we report
on neutron-scattering measurements of the quasi-
elastic ferroelectric fluctuations in lead germa-
nate, Pb40e, O». This material undergoes uni-
axial ferroelectric phase transition from a para-
electric phase of symmetry P6 to a ferroelectric
phase of symmetry I'3.' In this case symmetry
prohibits a linear coupling between the phonon-
density fluctuations and the electric polarization
fluctuations in the paraelectric phase. Further-
more, the theory of fluctuations in uniaxial ferro-
electrics shows that 0 =3 is the marginal dimen-
sion for these materials so that static properties
are expected to be described by classical expo-
nents with the possibility of logarithmic correc-
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