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The usual stimulus-based neural counting model for audition is found to be mathemat-
ically identical to the well-known semiclassical formalism for photon counting. In partic-
ular, we explicitly demonstrate the equivalence of McGill's noncentral negative binomial
distribution and Perina's multimode conQuent hypergeornetric distribution for a coherent
signa1 imbedded in chaotic noise. Dead-time corrections, important both in neura1 count-
ing and in photon counting, are incorporated in a generalized form of this distribution.
Some specific implications of these results are discussed.

In an attempt to explain the relative frequency
of multiple occurrences of accidents in a factory
population, Greenwood and Yule' in 1920 provid-
ed an important and remarkably simple general-
ization of the Poisson process. These authors
assumed that although the probability of accident

for a given worker follows the simple Poisson
law, variation in individual proneness to accident
causes the accident rate to vary from individual
to individual in the population. They then calcu-
lated the overall probability of multiple accidents
using certain plausible density functions for this
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individual variation. Their formalism has wide-
spread applicability in a variety of disciplines,
and has been studied intensively in recent years,
although it is not widely understood that Green-
wood and Yule originated this method. Such com-
pound or doubly stochastic Poisson processes,
as they are now called, occur when a continuous
signal drives the mean rate of a Poisson distribu-
tion.

The purpose of this communication is threefold.
First, we suggest that the stimulus-based neural
counting model for audition proposed by McGill, '
and the semiclassical description for the photon
counting detection of light considered by Purcell'
and Mandel, ' are equivalent from a mathematical
point of view and may be formally represented in
terms of Greenwood and Yule's compound Poisson
process. For both of these problems, the under-
lying Poisson behavior may arise from the occur-
rence of independent events or from the super-
position of a large number of arbitrary stochastic
point processes. For the particular neural count-
ing model considered by McGill, the information-
carrying continuous rate parameter is represent-
ed by the time-integrated intensity (or energy) of
the stimulus; for photon counting it is the time-
integrated intensity of the light that drives the
mean rate of the basic Poisson process. The in-
tegration time is taken to be the observation per-
iod and, in both cases, the discrete counting sta-
tistics mimic the continuous-signal energy fluc-
tuations. The identity described above implies
that the body of research results available for
semiclassical photon counting, corresponding to
the usual normal ordering of creation and annihi-
lation operators in a quantum-electrodynamic for-
malism, ' is applicable to neural counting, and
vice versa.

Second, we demonstrate the equivalence of the
neural counting results of McGill' and the photon
counting results of Perina, "for a sinusoidal (co-
herent) signal imbedded in broad-band Gaussian
(chaotic) noise of the same center frequency.
Both of these calculations make use of Rice's
well-known statistical analysis in the continuous
signal domain. ' Their simultaneous appearance

in 1967 is quite remarkable and underscores the
importance of current analytical work in physics
and electrical engineering for seemingly unre-
lated studies involving neural information pro-
cessing and psychophysics. A number of gener-
alizations of this work were subsequently ad-
vanced'"; in particular, an expression for the
counting distribution for coherent and chaotic
signal components with different mean frequen-
cies was obtained by Perina and Borak' in 1969.

Finally, we use the method of Cantor and co-
workers"" to incorporate the effects of fixed
dead time (refractoriness) in this generalized
counting distribution. The applicability to neural
counting of the essential mathematical results
obtained from this exercise cannot be advanced
with utter assurance in the current state of our
knowledge; nevertheless Teich, Matin, and Can-
tor" have recently shown that refractoriness can
play an important role in visual information pro-
cessing at the ganglion cell level. Interest in
these equations from a photon-counting point of
view stems from the deleterious effects of dead
time on system channel capacity and error per-
formance.

The superposition of a coherent and a chaotic
signal provides a useful example for a number of
reasons. In auditory neurophysiological and
psychophysical research, and in photon counting
and optical communications as well, it is a fre-
quently used stimulus. Acoustically and electro-
magnetically, it is a simple matter to create a
pure tone (sinusoidal signal) imbedded in Gauss-
ian (chaotic) noise. An amplitude-stabilized laser
operated in the usual regime well above threshold
also obeys this model exceedingly well. ' '" Fur-
thermore, as we will show shortly, it is not diffi-
cult to extract from these superposition results
a number of limiting cases that have been studied
in great detail experimentally.

The mathematical equivalence of McGill's neu-
ral counting distribution and Perina's photon
counting result may be explicitly demonstrated as
follows. Using the notational correspondences
provided in Table I, we rewrite Eq. (22) of Ref. 2,
for the probability P(n, T) that exactly n counts
will be recorded in the time interval T, as

P(n, T) =[1+(M/(n, ))] "[1+((no)/M)] "exp(- (n, )M/(n, ))

1 (k+n+M —1)! " (n, )M
0 n! k!(k+M —1)! (no)(M+(no))

Factors not dependent on the variable k have been removed from the summation. The quantities (n, )
and (n, ) represent the average number of counts arising from the coherent and the chaotic components
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TABLE I. Notational correspondences among various authors for count-
ing distributions of the noncentral negative binomial form (first 3 columns)
and of the simple negative binomial form gast 2 columns).

Present
paper Mc Gill Perina"

Greenwood
and Yule' Mand el

p(n, T)

&n,&
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&n&

P(W)
&w&
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E(x)
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&n&
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IJ2
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p(n r)
a =r/t

~ 0

e$/T

&d'n&

PP)

'Ref. 2.
Befs. 6, 7, 9, 16—18.

Bef. 1.
Ref. 4.

of the source, respectively. M is the number of modes (M~ 1), or degrees of freedom, contributing
to the noise; this has been discussed in Refs. 2, 6, and 10, and an explicit expression for M will be
forthcoming shortly. Following McGill, we refer to this as the noncentral negative binomial distribu-
tion.

To proceed, we need only note that the infinite summation in Eq. (1) may be expressed in terms of
the confluent hypergeometric function, E, through the identity'

(M-1)! ™(u+n+M-1)!
(M+n —1)!„~o k!(0+M-1)!

where

s =- (n, & M'/[&n, )(M+ (n, &)].

Combining Eqs. (1)-(3)yields the counting distribution

")=
&-

') ('&..)) ( '-') -(- &.. )'(-"&..)«-, ..)))
which is identically Perina's photon counting formula for fully polarized light. ' This distribution may
be (and often is) written equivalently"' in terms of the generalized Laguerre polynomial L„s '(s):

&n+M —1)!( &n) ) ( M ) ( M+&u) ) " ( &n)&M+&m)))

(4)

(5)

It is informative to examine a number of special cases of this distribution: (a) For M =1, Eqs. (4)
and (5) reduce to the single-mode versions first obtained by Lachs' and by Glauber, ' respectively.
(b) For &no& - 0, corresponding to a pure coherent signal, the noncentral negative binomial distribu-
tion reduces to a simple Poisson. (c) For (n, & -0, corresponding to pure Gaussian noise, the simple
negative binomial distribution is recovered. This latter distribution was explicitly obtained by Green-
wood and Yule' and by Mandel. ' Connection with the notation of these authors is also provided in Table
I. We note that independent, additive, noninterfering noise (such as that arising from the spontaneous
discharge, background noise, or dark current) is easily incorporated into the counting distribution
represented in Eqs. (4) and (5) by forming a convolution sum with the appropriate noise count statistics
(which are usually Poisson).

Equation (5), and therefore Eqs. (1) and (4) as well, are approximate. It has been obtained under a,

number of assumptions, including a uniform noise density, although this latter condition can be re-
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laxed at the expense of increased complexity. '" The number of degrees of freedom, M, is expressed
in terms of the second-order degrees of coherence for chaotic and coherent components [y,(T'') and
yq (T'), respectively J through the relation"'"

M =(&n,&+2&n,&)/(&n, &y, + 2&n, & y,),

with

y, =2T 'J (T r'—)(y,(T')~'dT',
(7)

y, = 2T 'J (T T')—Re{y,(r')y, *(T')]dr'

Perina et al. ' have recently compared the relatively simple approximate counting distribution dis-
cussed above with that calculated from Laxpati and Lachs's" exact closed-form recursion relation for
arbitrary spectra. The approximation turns out to be best for rectangular and Gaussian spectra, and
worst for Lorentzian spectra, but excellent in practically all cases.

Relatively simple analytic expressions for the generating functions and moments of the counting dis-
tribution [including the count mean (g& and the count variance &(bn)'&] have also been obtained. " Fur-
thermore, the integrated intensity distribution P( and its various generating functions and moments,
including the mean &W& and the variance &(4W)'&, are well known" a, lthough we do not discuss these
further here.

The superposition of coherent and chaotic signal components with different mean frequencies (a, and
&d„respectively) leads to the counting distribution

(8)

where

~ = [st—,'(u), -(u, )T] /[ —,'(~, -~,) T]. (9)

This result, obtained by Perina, and HorW, represents a generalization of Eq. (5) applicable to the
heterodyning of a chaotic source with a coherent local oscillator. ""The accuracy of Eq. (8), which
is also an approximation, has been shown to be as good as or better than that of Eq. (5) [z = 1], which
is excellent as indicated earlier. ""

We now introduce refractoriness into Eq. (8). Dead-time effects have been considered from a gener-
al point of view by a number of authors including Feller, ' Smith, "and Takfcs. " A comprehensive
bibliography of papers in this field has recently appeared. " Most of this work has been structured
within the framework of renewal theory, and a number of counting-distribution-limit theorems have
been obtained. Parzen2' has introduced the general type pcounter, wh-ich reduces to paralyzable and
nonparalyzable behavior as special eases. He specifically deals with the renewal counting process,
but primarily from a general viewpoint Cantor and Teich"" extended the results of De Lotto, Man-
fredi, and Principi~ and Bddard" to obtain dead-time-corrected counting distributions for sources of
arbitrary statistics, under a variety of conditions. The nonparalyzable counter was assumed to exhib-
it a fixed dead time 7, and to be unblocked at the beginning of the counting interval T. The corrected
distribution is simply expressible in terms of the uncorrected distribution and the ratio T/T Even.
small values of T/T (-1'fo) alter the counting distribution markedly. ""

Rewriting Eq. (7) of Ref. 11 to emphasize its dependence on the ratio 7/T, the expression for the
fixed-dead-time —corrected counting distribution (in those cases for which the formula is valid) is

p(n, T,T/T) =Q (p„(u, T)&„-Q&p, (n -1,T) &~, (10)

where

&p~(n, T)&„= &(A, l) {&n&[1 (T/T)e]i exp—{—&n&[1 —(7'/T)nJ] &~. (11)

In particular, for the general superposition source discussed above, the quantity &p, (n, T)&N, is obtained
by using the following replacements in the right-hand side of Eq. (8): &no&- &eo&[1-(w/T)n],
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- (n,) [1—(T/T)n], and n -h. When, in addition, the receiver structure and signaling format are spec-
ified, receiver performance (represented by the psychometric function) and mutual information (repre-
sented by the channel capacity) can be obtained from Eqs. (8), (10), and (11), and a detection law can
be calculated in the presence of dead time. This same distribution will also be useful in visual psycho-
physics, e.g. , when the stimulus is laser radiation. In neurophysiological contexts, Eq. (10) appears
to provide a description for the observed firing statistics of individual auditory and visual neural fi-
bers in certain cases. We have already shown that the special case (M»1, (n, ) =0, T/T-0. 1j, which
reduces to the fixed-dead-time-corrected Poisson distribution, provides a good representation for the
maintained discharge in the cat's retinal ganglion cell. "

*A preliminary report of this work was presented at a Columbia University Special Seminar in April 1975 and at
the Annual Meeting of the Society for Neuroscience in November 1975.

)Work supported by the John Simon Guggenheim Memorial Foundation, the National Institute of Mental Health, and
the National Science Foundation.
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